SL
Sean Li
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(56% Open Access)
Cited by:
2,715
h-index:
67
/
i10-index:
257
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode

Wenchao Zhang et al.Feb 17, 2017
Potassium-ion batteries (PIBs) are interesting as one of the alternative metal-ion battery systems to lithium-ion batteries (LIBs) due to the abundance and low cost of potassium. We have herein investigated Sn4P3/C composite as a novel anode material for PIBs. The electrode delivered a reversible capacity of 384.8 mA h g-1 at 50 mA g-1 and a good rate capability of 221.9 mA h g-1, even at 1 A g-1. Its electrochemical performance is better than any anode material reported so far for PIBs. It was also found that the Sn4P3/C electrode displays a discharge potential plateau of 0.1 V in PIBs, slightly higher than for sodium-ion batteries (SIBs) (0.01 V), and well above the plating potential of metal. This diminishes the formation of dendrites during cycling, and thus Sn4P3 is a relatively safe anode material, especially for application in large-scale energy storage, where large amounts of electrode materials are used. Furthermore, a possible reaction mechanism of the Sn4P3/C composite as PIB anode is proposed. This work may open up a new avenue for further development of alloy-based anodes with high capacity and long cycle life for PIBs.
0

Atomic Interface Engineering and Electric‐Field Effect in Ultrathin Bi2MoO6 Nanosheets for Superior Lithium Ion Storage

Yang Zheng et al.Apr 24, 2017
Ultrathin 2D materials can offer promising opportunities for exploring advanced energy storage systems, with satisfactory electrochemical performance. Engineering atomic interfaces by stacking 2D crystals holds huge potential for tuning material properties at the atomic level, owing to the strong layer-layer interactions, enabling unprecedented physical properties. In this work, atomically thin Bi2 MoO6 sheets are acquired that exhibit remarkable high-rate cycling performance in Li-ion batteries, which can be ascribed to the interlayer coupling effect, as well as the 2D configuration and intrinsic structural stability. The unbalanced charge distribution occurs within the crystal and induces built-in electric fields, significantly boosting lithium ion transfer dynamics, while the extra charge transport channels generated on the open surfaces further promote charge transport. The in situ synchrotron X-ray powder diffraction results confirm the material's excellent structural stability. This work provides some insights for designing high-performance electrode materials for energy storage by manipulating the interface interaction and electronic structure.
0

Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting

Wenxian Li et al.Jun 25, 2024
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
0
Citation4
0
Save
Load More