DY
Dian Yang
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Whitehead Institute for Biomedical Research, Columbia University, Huazhong University of Science and Technology
+ 14 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
171
h-index:
4
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution

Dian Yang et al.May 21, 2022
+20
S
M
D
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.
2
Paper
Citation132
1
Save
0

Mapping Transcriptomic Vector Fields of Single Cells

Xiaojie Qiu et al.May 6, 2020
+12
S
Y
X
Single-cell RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires dynamical models capable of predicting cell fate and unveiling the governing regulatory mechanisms. Here, we introduce dynamo , an analytical framework that reconciles intrinsic splicing and labeling kinetics to estimate absolute RNA velocities, reconstructs velocity vector fields that predict future cell fates, and finally employs differential geometry analyses to elucidate the underlying regulatory networks. We applied dynamo to a wide range of disparate biological processes including prediction of future states of differentiating hematopoietic stem cell lineages, deconvolution of glucocorticoid responses from orthogonal cell-cycle progression, characterization of regulatory networks driving zebrafish pigmentation, and identification of possible routes of resistance to SARS-CoV-2 infection. Our work thus represents an important step in going from qualitative, metaphorical conceptualizations of differentiation, as exemplified by Waddington’s epigenetic landscape, to quantitative and predictive theories.
0

Deciphering cell states and genealogies of human hematopoiesis

Chen Weng et al.Mar 4, 2024
+24
D
F
C
0
Paper
Citation7
-1
Save
89

Lineage Recording Reveals the Phylodynamics, Plasticity and Paths of Tumor Evolution

Dian Yang et al.Oct 24, 2023
+20
S
M
D
SUMMARY Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth, expansion to neighboring and distal tissues, and therapeutic resistance. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53 (KP)-driven lung adenocarcinoma which enabled us to track tumor evolution from single transformed cells to metastatic tumors at unprecedented resolution. We found that loss of the initial, stable alveolar-type2-like state was accompanied by transient increase in plasticity. This was followed by adoption of distinct fitness-associated transcriptional programs which enable rapid expansion and ultimately clonal sweep of rare, stable subclones capable of metastasizing to distant sites. Finally, we showed that tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates tumor progression by creating novel evolutionary paths. Overall, our study elucidates the hierarchical nature of tumor evolution, and more broadly enables the in-depth study of tumor progression.
89
Paper
Citation6
0
Save
43

Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform

Santiago Naranjo et al.Oct 24, 2023
+9
L
C
S
ABSTRACT Lung cancer is the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD), the most common histological subtype, accounts for 40% of all cases. While genetically engineered mouse models (GEMMs) recapitulate the histological progression and transcriptional evolution of human LUAD, they are slow and technically demanding. In contrast, cell line transplant models are fast and flexible, but are often derived from clonal idiosyncratic tumors that fail to capture the full spectrum of clinical disease. Organoid technologies provide a means to create next-generation cancer models that integrate the most relevant features of autochthonous and transplant-based systems, yet robust and faithful LUAD organoid platforms are currently lacking. Here, we describe optimized conditions to continuously expand murine alveolar type 2 cells (AT2), a prominent cell-of-origin for LUAD, in organoid culture. These organoids display canonical features of AT2 cells, including marker gene expression, the presence of lamellar bodies, and an ability to differentiate into the AT1 lineage. We used this system to develop flexible and versatile immunocompetent organoid-based models of KRAS and ALK- mutant LUAD. Notably, the resultant tumors closely resemble their autochthonous murine counterparts and human LUAD. In contrast to comparable organoid platforms, our system supports long-term maintenance of the AT2 cellular identity, providing unprecedented ease and reliability to study AT2 and LUAD biology in vitro and in vivo .
43
Citation2
0
Save
1

Neuronal mimicry generates an ecosystem critical for brain metastatic growth of SCLC

Fangfei Qu et al.Oct 24, 2023
+11
W
S
F
ABSTRACT Brain metastasis is a major cause of morbidity and mortality in cancer patients. Here we investigated mechanisms allowing small-cell lung cancer (SCLC) cells to grow in the brain. We show that SCLC cells undergo a cell state transition towards neuronal differentiation during tumor progression and metastasis, and that this neuronal mimicry is critical for SCLC growth in the brain. Mechanistically, SCLC cells re-activate astrocytes, which in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. We further identify Reelin, a molecule important in brain development, as a factor secreted by SCLC cells to recruit astrocytes to brain metastases in mice. This recruitment of astrocytes by SCLC was recapitulated in assembloids between SCLC aggregates and human cortical spheroids. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during development. Targeting such developmental programs activated in this cancer ecosystem may help treat brain metastases.
0

Mapping the Genetic Landscape of DNA Double-strand Break Repair

Jeffrey Hussmann et al.Jun 6, 2024
+9
P
J
J
SUMMARY Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways that are critical for maintaining genomic integrity. Here we present Repair-seq, a high-throughput screening approach that measures the effects of thousands of genetic perturbations on the distribution of mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair outcomes induced by two programmable nucleases (Cas9 and Cas12a) after knockdown of 476 genes involved in DSB repair or associated processes in the presence or absence of oligonucleotides for homology-directed repair (HDR). The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. Systematic interrogation of these dependencies then uncovered unexpected relationships among DSB repair genes and isolated incompletely characterized repair mechanisms. This work provides a foundation for understanding the complex pathways of DSB repair and for optimizing genome editing across modalities.
0
Citation1
0
Save
0

Axon-like protrusions promote small cell lung cancer migration and metastasis

Dian Yang et al.May 7, 2020
+8
H
F
D
Metastasis is the main cause of death in cancer patients but remains a poorly understood process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic types of human cancer. SCLC cells normally express neuroendocrine and neuronal gene programs but accumulating evidence indicates that these cancer cells become relatively more neuronal and less neuroendocrine as they gain the ability to metastasize. Here we show that mouse and human SCLC cells in culture and in vivo can grow cellular protrusions that resemble axons. The formation of these protrusions is controlled by multiple neuronal factors implicated in axonogenesis, axon guidance, and neuroblast migration. Disruption of these axon-like protrusions impairs cell migration in culture and inhibits metastatic ability in vivo. The co-option of developmental neuronal programs is a novel molecular and cellular mechanism that contributes to the high metastatic ability of SCLC.
11

Targeted therapies prime oncogene-driven lung cancers for macrophage-mediated destruction

Kyle Vaccaro et al.Oct 24, 2023
+8
T
J
K
Macrophage immune checkpoint inhibitors, such as anti-CD47 antibodies, show promise in clinical trials for solid and hematologic malignancies. However, the best strategies to use these therapies remain unknown and ongoing studies suggest they may be most effective when used in combination with other anticancer agents. Here, we developed a novel screening platform to identify drugs that render lung cancer cells more vulnerable to macrophage attack, and we identified therapeutic synergy exists between genotype-directed therapies and anti-CD47 antibodies. In validation studies, we found the combination of genotype-directed therapies and CD47 blockade elicited robust phagocytosis and eliminated persister cells in vitro and maximized anti-tumor responses in vivo. Importantly, these findings broadly applied to lung cancers with various RTK/MAPK pathway alterations-including EGFR mutations, ALK fusions, or KRASG12C mutations. We observed downregulation of β2-microglobulin and CD73 as molecular mechanisms contributing to enhanced sensitivity to macrophage attack. Our findings demonstrate that dual inhibition of the RTK/MAPK pathway and the CD47/SIRPa axis is a promising immunotherapeutic strategy. Our study provides strong rationale for testing this therapeutic combination in patients with lung cancers bearing driver mutations.
11
0
Save
0

Molecular recording of mammalian embryogenesis

M.K. Chan et al.May 6, 2020
+8
S
Z
M
Understanding the emergence of complex multicellular organisms from single totipotent cells, or ontogenesis, represents a foundational question in biology. The study of mammalian development is particularly challenging due to the difficulty of monitoring embryos in utero, the variability of progenitor field sizes, and the indeterminate relationship between the generation of uncommitted progenitors and their progression to subsequent stages. Here, we present a flexible, high information, multi-channel molecular recorder with a single cell (sc) readout and apply it as an evolving lineage tracer to define a mouse cell fate map from fertilization through gastrulation. By combining lineage information with scRNA-seq profiles, we recapitulate canonical developmental relationships between different tissue types and reveal an unexpected transcriptional convergence of endodermal cells from extra-embryonic and embryonic origins, illustrating how lineage information complements scRNA-seq to define cell types. Finally, we apply our cell fate map to estimate the number of embryonic progenitor cells and the degree of asymmetric partitioning within the pluripotent epiblast during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems to facilitate a quantitative framework for describing developmental processes.
Load More