JS
Jeremy Schmutz
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
116
(85% Open Access)
Cited by:
50,612
h-index:
103
/
i10-index:
270
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Sorghum bicolor genome and the diversification of grasses

Andrew Paterson et al.Jan 1, 2009
Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the ∼75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization ∼70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum’s drought tolerance. The Sorghum bicolor genome sequence is published this week. Sorghum is a cereal grown widely as food, animal feed, fibre and fuel. Tolerant to hot, dry conditions, it is a staple for large populations in the West African Sahel region. Comparisons of the genome with those of maize and rice shed light on the evolution of grasses and of C4 photosynthesis, which is particularly efficient at assimilating carbon at high temperatures. In addition, protein coding genes and miRNAs that could contribute to sorghum's drought tolerance may also be found. Sorghum yield improvement has lagged behind that of other crops and the availability of the genome sequence could provide a vital boost to work on its improvement. Sorghum is an African grass that is grown for food, animal feed and fuel. The current paper presents an initial analysis of the ∼730 megabase genome of Sorghum bicolor. Genome analysis and its comparison with maize and rice shed light on grass genome evolution and also provide insights into the evolution of C4 photosynthesis, as well as protein coding genes and miRNAs that might contribute to sorghum's drought tolerance.
0
Citation2,857
0
Save
0

The genomic basis of adaptive evolution in threespine sticklebacks

Felicity Jones et al.Apr 1, 2012
Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature. A reference genome sequence for threespine sticklebacks, and re-sequencing of 20 additional world-wide populations, reveals loci used repeatedly during vertebrate evolution; multiple chromosome inversions contribute to marine-freshwater divergence, and regulatory variants predominate over coding variants in this classic example of adaptive evolution in natural environments. Threespine sticklebacks have become a powerful model for studying the molecular basis of adaptive evolution. This paper presents a high-quality reference genome sequence, along with genomes of 20 further individuals from a global set of marine and freshwater populations. Genomic analysis reveals that reuse of globally shared standing genetic variation plays an important part in repeated evolution of distinct stickleback populations, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. The data are consistent with an important role for regulatory changes during parallel evolution of marine and freshwater sticklebacks.
0
Citation1,746
0
Save
0

The Phaeodactylum genome reveals the evolutionary history of diatom genomes

Chris Bowler et al.Oct 15, 2008
Diatoms, a type of microscopic marine and freshwater alga, dominate the oceans and are responsible for about a fifth of the primary productivity on Earth. The complete genome sequence of Phaeodactylum tricornutum is reported in this issue, the second diatom to be sequenced. Comparisons with Thalassiosira pseudonana, the first, reveal that hundreds of diatom genes have been acquired by gene transfer from bacteria — or vice versa. Gene transfer appears to have been common during diatom evolution, creating unorthodox combinations of genes — including some from plants and animals — likely to play major roles in nutrient management and environmental signalling. Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth1,2. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology3,4,5. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (∼40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.
0
Citation1,533
0
Save
0

A reference genome for common bean and genome-wide analysis of dual domestications

Jeremy Schmutz et al.Jun 8, 2014
Scott Jackson, Jeremy Schmutz, Phillip McClean and colleagues report the genome sequence of the common bean (Phaseolus vulgaris) and resequenced wild individuals and landraces from Mesoamerican and Andean gene pools, showing that common bean underwent two independent domestications. Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
0
Citation1,146
0
Save
Load More