RW
Robbie Waugh
Author with expertise in Genetic Diversity and Breeding of Wheat
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
49
(80% Open Access)
Cited by:
14,462
h-index:
93
/
i10-index:
267
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome sequence and analysis of the tuber crop potato

Xun Xu et al.Jul 1, 2011
Potato (Solanum tuberosum L.) is the world’s most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop. The genome of the potato (Solanum tuberosum L.), a staple crop vital to food security, has been sequenced. The Potato Genome Sequencing Consortium sequenced a homozygous doubled-monoploid potato clone as well as a heterozygous diploid clone. Genome analysis reveals traces of at least two genome duplication events and genes specific to Asterids, a large clade of flowering plants of which the potato is the first to be sequenced. Gene presence/absence variants and other potentially deleterious mutations are frequent and may be the cause of inbreeding depression. The genome sequence will facilitate genetic improvements in the potato with a view to improving yield and to increasing disease and stress resistance of this crop, which is a now a significant component of worldwide food production and is becoming increasingly important in the developing world.
0
Citation1,938
0
Save
0

A physical, genetic and functional sequence assembly of the barley genome

Klaus Mayer et al.Oct 16, 2012
Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement. An integrated high-resolution genetic, physical and shotgun sequence assembly of the barley genome, one of the earliest domesticated and most important crops, is described; it will provide a platform for genome-assisted research and future crop improvement. Two groups in this issue report the compilation and analysis of the genome sequences of major cereal crops — bread wheat and barley — providing important resources for future crop improvement. Bread wheat accounts for one-fifth of the calories consumed by humankind. It has a very large and complex hexaploid genome of 17 Gigabases. Michael Bevan and colleagues have analysed the genome using 454 pyrosequencing and compared it with diploid ancestral and progenitor genomes. The authors discovered significant loss of gene family members upon polyploidization and domestication, and expansion of gene classes that may be associated with crop productivity. Barley is one of the earliest domesticated plant crops. Although diploid, it has a very large genome of 5.1 Gigabases. Nils Stein and colleagues describe a physical map anchored to a high-resolution genetic map, on top of which they have overlaid a deep whole-genome shotgun assembly, cDNA and RNA-seq data to provide the first in-depth genome-wide survey of the barley genome.
0
Citation1,372
0
Save
0

A chromosome conformation capture ordered sequence of the barley genome

Martin Mascher et al.Apr 1, 2017
Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion. The International Barley Genome Sequencing Consortium reports sequencing and assembly of a reference genome for barley, Hordeum vulgare. Triticeae grasses, which include barley, wheat and rye, are widely cultivated plants with particularly complex genomes and evolutionary histories. Sequencing of the barley genome has been particularly challenging owing to its large size and particular genomic features, such as an abundance of repetitive elements. Nils Stein and colleagues of the International Barley Genome Sequencing Consortium report sequencing and assembly of a reference genome for barley (Hordeumvulgare L). They use a combined approach of hierarchical shotgun sequencing of bacterial artificial chromosomes, genome mapping on nanochannel arrays and chromosome-scale scaffolding with Hi-C sequencing. This brings the first comprehensive, completely ordered assembly of the pericentromeric regions of a Triticeae genome. The authors also sequenced and examined genetic diversity in the exomes of 96 European elite barley lines with a spring or winter growth habit, and highlight the utility of this resource for cereal genomics and breeding programs.
0
Citation1,275
0
Save
0

A Simple Sequence Repeat-Based Linkage Map of Barley

Luke Ramsay et al.Dec 1, 2000
Abstract A total of 568 new simple sequence repeat (SSR)-based markers for barley have been developed from a combination of database sequences and small insert genomic libraries enriched for a range of short simple sequence repeats. Analysis of the SSRs on 16 barley cultivars revealed variable levels of informativeness but no obvious correlation was found with SSR repeat length, motif type, or map position. Of the 568 SSRs developed, 242 were genetically mapped, 216 with 37 previously published SSRs in a single doubled-haploid population derived from the F1 of an interspecific cross between the cultivar Lina and Hordeum spontaneum Canada Park and 26 SSRs in two other mapping populations. A total of 27 SSRs amplified multiple loci. Centromeric clustering of markers was observed in the main mapping population; however, the clustering severity was reduced in intraspecific crosses, supporting the notion that the observed marker distribution was largely a genetical effect. The mapped SSRs provide a framework for rapidly assigning chromosomal designations and polarity in future mapping programs in barley and a convenient alternative to RFLP for aligning information derived from different populations. A list of the 242 primer pairs that amplify mapped SSRs from total barley genomic DNA is presented.
0
Citation637
0
Save
0

Development and implementation of high-throughput SNP genotyping in barley

Timothy Close et al.Jan 1, 2009
High density genetic maps of plants have, nearly without exception, made use of marker datasets containing missing or questionable genotype calls derived from a variety of genic and non-genic or anonymous markers, and been presented as a single linear order of genetic loci for each linkage group. The consequences of missing or erroneous data include falsely separated markers, expansion of cM distances and incorrect marker order. These imperfections are amplified in consensus maps and problematic when fine resolution is critical including comparative genome analyses and map-based cloning. Here we provide a new paradigm, a high-density consensus genetic map of barley based only on complete and error-free datasets and genic markers, represented accurately by graphs and approximately by a best-fit linear order, and supported by a readily available SNP genotyping resource. Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Data from three barley doubled haploid mapping populations supported the production of an initial consensus map. Over 200 germplasm selections, principally European and US breeding material, were used to estimate minor allele frequency (MAF) for each SNP. We selected 3,072 of these tested SNPs based on technical performance, map location, MAF and biological interest to fill two 1536-SNP "production" assays (BOPA1 and BOPA2), which were made available to the barley genetics community. Data were added using BOPA1 from a fourth mapping population to yield a consensus map containing 2,943 SNP loci in 975 marker bins covering a genetic distance of 1099 cM. The unprecedented density of genic markers and marker bins enabled a high resolution comparison of the genomes of barley and rice. Low recombination in pericentric regions is evident from bins containing many more than the average number of markers, meaning that a large number of genes are recombinationally locked into the genetic centromeric regions of several barley chromosomes. Examination of US breeding germplasm illustrated the usefulness of BOPA1 and BOPA2 in that they provide excellent marker density and sensitivity for detection of minor alleles in this genetically narrow material.
0
Citation614
0
Save
0

A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping

David Spooner et al.Oct 3, 2005
The cultivated potato, Solanum tuberosum , ultimately traces its origin to Andean and Chilean landraces developed by pre-Colombian cultivators. These Andean landraces exhibit tremendous morphological and genetic diversity, and are distributed throughout the Andes, from western Venezuela to northern Argentina, and in southern Chile. The wild species progenitors of these landraces have long been in dispute, but all hypotheses center on a group of ≈20 morphologically very similar tuber-bearing ( Solanum section Petota ) wild taxa referred to as the S. brevicaule complex, distributed from central Peru to northern Argentina. We present phylogenetic analyses based on the representative cladistic diversity of 362 individual wild (261) and landrace (98) members of potato (all tuber-bearing) and three outgroup non-tuber-bearing members of Solanum section Etuberosum , genotyped with 438 robust amplified fragment length polymorphisms. Our analyses are consistent with a hypothesis of a “northern” (Peru) and “southern” (Bolivia and Argentina) cladistic split for members of the S. brevicaule complex, and with the need for considerable reduction of species in the complex. In contrast to all prior hypotheses, our data support a monophyletic origin of the landrace cultivars from the northern component of this complex in Peru, rather than from multiple independent origins from various northern and southern members.
0
Citation479
0
Save
Load More