ABSTRACT Despite the increasing use of high-throughput sequencing in phylogenetics, many phylogenetic relationships remain difficult to resolve because of conflict between gene trees and species trees. Selection of different types of markers (i.e. protein-coding exons, non-coding introns, ultra-conserved elements) is becoming important to alleviate these phylogenomic challenges. For evolutionary studies in frogs, we introduce the new publicly available FrogCap suite of genomic resources, which is a large and flexible collection of probes corresponding to ∼15,000 markers that unifies previous frog sequencing work. FrogCap is designed to be modular, such that subsets of markers can be selected based on the phylogenetic scale of the intended study. FrogCap uses a variety of molecular marker types that include newly obtained exons and introns, previously sequenced UCEs, and Sanger-sequencing markers, which span a range of alignment lengths (100–12,000 base pairs). We tested three probe sets from FrogCap using 105 samples across five phylogenetic scales, comparing probes designed using a consensus- or genome-based approach. We also tested the effects of using different bait kit sizes on depth of coverage and missing data. We found that larger bait kits did not result in lowered depth of coverage or increased missing data. We also found that sensitivity, specificity, and missing data are not related to genetic distance in the consensus-based probe design, suggesting that this approach has greater success and overcomes a major hurdle in probe design. We observed sequence capture success (in terms of missing data, quantity of sequence data, recovered marker length, and number of informative sites) and compared them at all phylogenetic scales. The incorporation of different molecular marker types allowed recovery of the variation required for resolving difficult phylogenetic relationships and for performing population genetic studies. Altogether, FrogCap is a valuable and adaptable resource for performing high-throughput sequencing projects across variable timescales.