Abstract Recent advances in single-cell sequencing technologies have enabled simultaneous measurement of multiple cellular modalities, including various combinations of transcriptome, genome and epigenome. However, comprehensive profiling of the histone post-translational modifications that influence gene expression at single-cell resolution has remained limited. Here, we introduce EpiDamID, an experimental approach to target a diverse set of chromatin types by leveraging the binding specificities of genetically engineered proteins. By fusing Dam to single-chain variable fragment antibodies, engineered chromatin reader domains, or endogenous chromatin-binding proteins, we render the DamID technology and all its implementations compatible with the genome-wide identification of histone post-translational modifications. Importantly, this enables the joint analysis of chromatin marks and transcriptome in a variety of biological systems at the single-cell level. In this study, we use EpiDamID to profile single-cell Polycomb occupancy in mouse embryoid bodies and provide evidence for hierarchical gene regulatory networks. We further demonstrate the applicability of this method to in vivo systems by mapping H3K9me3 in early zebrafish embryogenesis, and detect striking heterochromatic regions specifically in the notochord. Overall, EpiDamID is a new addition to a vast existing toolbox for obtaining systematic insights into the role of chromatin states during dynamic cellular processes.