GA
Geoffrey Aguirre
Author with expertise in Neural Mechanisms of Visual Perception and Processing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
37
(76% Open Access)
Cited by:
7,995
h-index:
59
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Functional MRI studies of spatial and nonspatial working memory

Mark D’Esposito et al.Jul 1, 1998
Single-unit recordings in monkeys have revealed neurons in the lateral prefrontal cortex that increase their firing during a delay between the presentation of information and its later use in behavior. Based on monkey lesion and neurophysiology studies, it has been proposed that a dorsal region of lateral prefrontal cortex is necessary for temporary storage of spatial information whereas a more ventral region is necessary for the maintenance of nonspatial information. Functional neuroimaging studies, however, have not clearly demonstrated such a division in humans. We present here an analysis of all reported human functional neuroimaging studies plotted onto a standardized brain. This analysis did not find evidence for a dorsal/ventral subdivision of prefrontal cortex depending on the type of material held in working memory, but a hemispheric organization was suggested (i.e., left—nonspatial; right—spatial). We also performed functional MRI studies in 16 normal subjects during two tasks designed to probe either nonspatial or spatial working memory, respectively. A group and subgroup analysis revealed similarly located activation in right middle frontal gyrus (Brodmann's area 46) in both spatial and nonspatial [working memory-control] subtractions. Based on another model of prefrontal organization [M. Petrides, Frontal lobes and behavior, Cur. Opin. Neurobiol., 4 (1994) 207–211], a reconsideration of the previous imaging literature data suggested that a dorsal/ventral subdivision of prefrontal cortex may depend upon the type of processing performed upon the information held in working memory.
0

Empirical Analyses of BOLD fMRI Statistics

Eric Zarahn et al.Apr 1, 1997
Temporal autocorrelation, spatial coherency, and their effects on voxel-wise parametric statistics were examined in BOLD fMRI null-hypothesis, or "noise," datasets. Seventeen normal, young subjects were scanned using BOLD fMRI while not performing any time-locked experimental behavior. Temporal autocorrelation in these datasets was described well by a 1/frequency relationship. Voxel-wise statistical analysis of these noise datasets which assumed independence (i.e., ignored temporal autocorrelation) rejected the null hypothesis at a higher rate than specified by the nominal alpha. Temporal smoothing in conjunction with the use of a modified general linear model (Worsley and Friston, 1995, NeuroImage 2: 173-182) brought the false-positive rate closer to the nominal alpha. It was also found that the noise fMRI datasets contain spatially coherent time signals. This observed spatial coherence could not be fully explained by a continuously differentiable spatial autocovariance function and was much greater for lower temporal frequencies. Its presence made voxel-wise test statistics in a given noise dataset dependent, and thus shifted their distributions to the right or left of 0. Inclusion of a "global signal" covariate in the general linear model reduced this dependence and consequently stabilized (i.e., reduced the variance of) dataset false-positive rates.
0

The Parahippocampus Subserves Topographical Learning in Man

Geoffrey Aguirre et al.Jan 1, 1996
The hippocampus has been proposed as the site of neural representation of large-scale environmental space, based upon the identification of place cells (neurons with receptive fields for current position in the environment) within the rat hippocampus and the demonstration that hippocampal lesions impair place learning in the rat. The inability to identify place cells within the monkey hippocampus and the observation that unilateral hippocampal lesions do not selectively impair topographic behavior in humans suggest that alternate regions may subserve this function in man. To examine the contribution of the hippocampus and adjacent medial-temporal lobe structures to topographic learning in the human, a 'virtual' maze was used as a task environment during functional magnetic resonance imaging studies. During the learning and recall of topographic information, medial-temporal activity was confined to the para- hippocampal gyri. This activity accords well with the lesion site known to produce topographical disorientation in humans. Activity was also observed in cortical areas known to project to the parahippocampus and previously proposed to contribute to a network subserving spatially guided behavior.
0

Empirical Analyses of BOLD fMRI Statistics

Geoffrey Aguirre et al.Apr 1, 1997
In the companion to this paper (E. Zarahn, G. K. Aguirre, and M. D'Esposito, 1997,NeuroImage,179–197), we describe an implementation of a general linear model for autocorrelated observations in which the voxel-wise false-positive rates in fMRI "noise" datasets were stabilized and brought close to theoretical values. Here, implementations of the model are tested for use with statistical parametric mapping analysis of spatially smoothed fMRI data. Analyses using varying models of intrinsic temporal autocorrelation and either including or excluding a global signal covariate were conducted upon human subject data collected under null hypothesis as well as under experimental conditions. We found that smoothing with an empirically derived impulse response function (IRF), combined with a model of the intrinsic temporal autocorrelation in spatially smoothed fMRI data, resulted in a map-wise false-positive rate which did not exceed a 5% level when a nominal α = 0.05 tabular threshold was applied. Use of other models of intrinsic temporal autocorrelation resulted in map-wise false-positive rates that significantly exceeded this level. fMRI data collected while subjects performed a behavioral task were used to examine (a) task-dependent global signal changes and (b) the dependence of sensitivity on the temporal smoothing kernel and inclusion/exclusion of a global signal covariate. The global signal changes within an fMRI dataset were shown to be influenced by the performance of a behavioral task. However, the inclusion of this measure as a covariate did not have an adverse affect upon our measure of sensitivity. Finally, use of an empirically derived estimate of the IRF of the system was shown to result in greater map-wise sensitivity for signal changes than the use of a broader (in time) Poisson (parameter = 8 s) kernel.
0

The Effect of Normal Aging on the Coupling of Neural Activity to the Bold Hemodynamic Response

Mark D’Esposito et al.Jul 1, 1999
The use of functional neuroimaging to test hypotheses regarding age-related changes in the neural substrates of cognitive processes relies on assumptions regarding the coupling of neural activity to neuroimaging signal. Differences in neuroimaging signal response between young and elderly subjects can be mapped directly to differences in neural response only if such coupling does not change with age. Here we examined spatial and temporal characteristics of the BOLD fMRI hemodynamic response in primary sensorimotor cortex in young and elderly subjects during the performance of a simple reaction time task. We found that 75% of elderly subjects (n = 20) exhibited a detectable voxel-wise relationship with the behavioral paradigm in this region as compared to 100% young subjects (n = 32). The median number of suprathreshold voxels in the young subjects was greater than four times that of the elderly subjects. Young subjects had a slightly greater signal:noise per voxel than the elderly subjects that was attributed to a greater level of noise per voxel in the elderly subjects. The evidence did not support the idea that the greater head motion observed in the elderly was the cause of this greater voxel-wise noise. There were no significant differences between groups in either the shape of the hemodynamic response or in its the within-group variability, although the former evidenced a near significant trend. The overall finding that some aspects of the hemodynamic coupling between neural activity and BOLD fMRI signal change with age cautions against simple interpretations of the results of imaging studies that compare young and elderly subjects.
Load More