FC
Fanny Cazettes
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
38
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Standardized and reproducible measurement of decision-making in mice

Valeria Aguillon-Rodriguez et al.Jan 17, 2020
Progress in science requires standardized assays whose results can be readily shared, compared, and reproduced across laboratories. Reproducibility, however, has been a concern in neuroscience, particularly for measurements of mouse behavior. Here we show that a standardized task to probe decision-making in mice produces reproducible results across multiple laboratories. We designed a task for head-fixed mice that combines established assays of perceptual and value-based decision making, and we standardized training protocol and experimental hardware, software, and procedures. We trained 140 mice across seven laboratories in three countries, and we collected 5 million mouse choices into a publicly available database. Learning speed was variable across mice and laboratories, but once training was complete there were no significant differences in behavior across laboratories. Mice in different laboratories adopted similar reliance on visual stimuli, on past successes and failures, and on estimates of stimulus prior probability to guide their choices. These results reveal that a complex mouse behavior can be successfully reproduced across multiple laboratories. They establish a standard for reproducible rodent behavior, and provide an unprecedented dataset and open-access tools to study decision-making in mice. More generally, they indicate a path towards achieving reproducibility in neuroscience through collaborative open-science approaches.
32

Phasic activation of dorsal raphe serotonergic neurons increases pupil-linked arousal

Fanny Cazettes et al.Jun 27, 2020
SUMMARY Variations in pupil size under constant luminance are closely coupled to changes in arousal state [1–5]. It is assumed that such fluctuations are primarily controlled by the noradrenergic system [6–9]. Phasic activity of noradrenergic axons precedes pupil dilations associated with rapid changes in arousal [7,9], and is believed to be driven by unexpected uncertainty [1,10–16]. However, the role of other modulatory pathways in the control of pupil-linked arousal has not been as thoroughly investigated, but evidence suggests that noradrenaline may not be alone [7,17,18]. Administration of serotonergic drugs seems to affect pupil size [19–23], but these effects have not been investigated in detail. Here, we show that transient serotonin (5-HT) activation, like noradrenaline, causes pupil-size changes. We used phasic optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DRN) in head-fixed mice locomoting in a foraging task. 5-HT-driven modulations of pupil size were maintained throughout the photostimulation period and sustained for several seconds after the end of the stimulation. The activation of 5-HT neurons increased pupil size additively with locomotor speed, suggesting that 5-HT transients affect pupil-linked arousal independently from locomotor states. We found that the effect of 5-HT on pupil size depended on the level of environmental uncertainty, consistent with the idea that 5-HT may report a salience or surprise signal [24]. Together, these results challenge the classic view of the neuromodulatory control of pupil-linked arousal, revealing a tight relationship between the activation of 5-HT neurons and changes in pupil size.
0

Citric Acid Water as an Alternative to Water Restriction for High-Yield Mouse Behavior

Anne Urai et al.Mar 2, 2020
A bstract Powerful neural measurement and perturbation tools have positioned mice as an ideal species for probing the neural circuit mechanisms of cognition. Crucial to this success is the ability to motivate animals to perform specific behaviors. One successful strategy is to restrict their water intake, rewarding them with water during a behavioral task. However, water restriction requires rigorous monitoring of animals’ health and hydration status and can be challenging for some mice. We present an alternative that allows mice more control over their water intake: free home-cage access to water, made slightly sour by a small amount of citric acid (CA). In a previous study, rats with free access to CA water readily performed a behavioral task for water rewards, although completing fewer trials than under water restriction (Reinagel, 2018). We here extend this approach to mice and confirm its robustness across multiple laboratories. Mice reduced their intake of CA water while maintaining healthy weights. Continuous home-cage access to CA water only subtly impacted their willingness to perform a decision-making task, in which they were rewarded with sweetened water. When free CA water was used instead of water restriction only on weekends, learning and decision-making behavior were unaffected. CA water is thus a promising alternative to water restriction, allowing animals more control over their water intake without interfering with behavioral performance. S ignificance S tatement High-throughput, reliable behavioral training is a key requirement for the use of mice in behavioral and systems neuroscience, but depends crucially on ability to motivate animals to perform specific behaviors. Here, we present an alternative method to commonly used methods of water restriction: free home-cage access to water, made slightly sour by a small amount of citric acid. This non-labor-intensive, low-error option benefits animal health without hindering behavioral training progress. Citric acid water can serve as a reliable and standardized strategy to achieve high quality task behavior, further facilitating the use of mice in high-throughput behavioral studies.
0

Emergence of an adaptive command for orienting behavior in premotor brainstem neurons of barn owls

Fanny Cazettes et al.Mar 22, 2017
The midbrain map of auditory space commands sound-orienting responses in barn owls. Owls precisely localize sounds in frontal space but underestimate the direction of peripheral sound sources. This bias for central locations was proposed to be adaptive to the decreased reliability in the periphery of sensory cues used for sound localization by the owl. Understanding the neural pathway supporting this biased behavior provides a means to address how adaptive motor commands are implemented by neurons. Here we find that the sensory input for sound direction is weighted by its reliability in premotor neurons of the owl's midbrain tegmentum such that the mean population firing rate approximates the head-orienting behavior. We provide evidence that this coding may emerge through convergence of upstream projections from the midbrain map of auditory space. We further show that manipulating the sensory input yields changes predicted by the convergent network in both premotor neural responses and behavior. This work demonstrates how a topographic sensory representation can be linearly read out to adjust behavioral responses by the reliability of the sensory input.