GA
Giorgio Ascoli
Author with expertise in Advanced Techniques in Bioimage Analysis and Microscopy
George Mason University, Institute for Advanced Study, EarthTech International (United States)
+ 8 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
38
(68% Open Access)
Cited by:
460
h-index:
53
/
i10-index:
169
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster

Ravi Das et al.Nov 13, 2023
+8
A
S
R
Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation.
1
Paper
Citation38
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
113

Cellular Anatomy of the Mouse Primary Motor Cortex

Rodrigo Muñoz-Castañeda et al.Oct 24, 2023
+79
K
B
R
Abstract An essential step toward understanding brain function is to establish a cellular-resolution structural framework upon which multi-scale and multi-modal information spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, through a collaborative effort from the Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based description of one brain structure - the primary motor cortex upper limb area (MOp-ul) of the mouse. Applying state-of-the-art labeling, imaging, computational, and neuroinformatics tools, we delineated the MOp-ul within the Mouse Brain 3D Common Coordinate Framework (CCF). We defined over two dozen MOp-ul projection neuron (PN) types by their anterograde targets; the spatial distribution of their somata defines 11 cortical sublayers, a significant refinement of the classic notion of cortical laminar organization. We further combine multiple complementary tracing methods (classic tract tracing, cell type-based anterograde, retrograde, and transsynaptic viral tracing, high-throughput BARseq, and complete single cell reconstruction) to systematically chart cell type-based MOp input-output streams. As PNs link distant brain regions at synapses as well as host cellular gene expression, our construction of a PN type resolution MOp-ul wiring diagram will facilitate an integrated analysis of motor control circuitry across the molecular, cellular, and systems levels. This work further provides a roadmap towards a cellular resolution description of mammalian brain architecture.
113
Citation18
0
Save
1

Formin 3 directs dendritic architecture via microtubule regulation and is required for somatosensory nociceptive behavior

Ravi Das et al.Nov 13, 2023
+9
J
S
R
Dendrite shape impacts functional connectivity and is mediated by organization and dynamics of cytoskeletal fibers. Identifying the molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding the mechanistic links between cytoskeletal organization and neuronal function. We identified Formin 3 (Form3) as an essential regulator of cytoskeletal architecture in nociceptive sensory neurons in Drosophila larvae. Time course analyses reveal that Form3 is cell-autonomously required to promote dendritic arbor complexity. We show that form3 is required for the maintenance of a population of stable dendritic microtubules (MTs), and mutants exhibit defects in the localization of dendritic mitochondria, satellite Golgi, and the TRPA channel Painless. Form3 directly interacts with MTs via FH1-FH2 domains. Mutations in human inverted formin 2 (INF2; ortholog of form3) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons result in severe impairment of noxious heat-evoked behaviors. Expression of the INF2 FH1-FH2 domains partially recovers form3 defects in MTs and nocifensive behavior, suggesting conserved functions, thereby providing putative mechanistic insights into potential etiologies of CMT sensory neuropathies.
1
Paper
Citation15
0
Save
1

The BRAIN Initiative Cell Census Network Data Ecosystem: A User’s Guide

Michael Hawrylycz et al.Oct 24, 2023
+96
P
M
M
Abstract Characterizing cellular diversity at different levels of biological organization across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also required to manipulate cell types in controlled ways, and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data generating centers, data archives and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain and demonstration of prototypes for human and non-human primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed, and to accessing and using the BICCN data and its extensive resources, including the BRAIN Cell Data Center (BCDC) which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted by the BICCN toward FAIR (Wilkinson et al. 2016a) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.
9

Whole Human-Brain Mapping of Single Cortical Neurons for Profiling Morphological Diversity and Stereotypy

Xiaofeng Han et al.Oct 24, 2023
+21
N
S
X
Abstract Quantification of individual cells’ morphology and their distribution at the whole brain scale is essential to understand the structure and diversity of cell types. Despite recent technological advances, especially single cell labeling and whole brain imaging, for many prevailing animal models, it is exceedingly challenging to reuse similar technologies to study human brains. Here we propose Adaptive Cell Tomography (ACTomography), a low-cost, high-throughput, high-efficacy tomography approach, based on adaptive targeting of individual cells suitable for human-brain scale modeling of single neurons to characterize their 3-D structures, statistical distributions, and extensible for other cellular features. Specifically, we established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and 1 donated fresh postmortem brain. We collected 3-D images of 1746 cortical neurons, of which 852 neurons were subsequentially reconstructed to quantify their local dendritic morphology, and mapped to standard atlases both computationally and semantically. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor-field of neuron morphology to characterize 3-D anatomical modularity of a human brain.
9
Citation4
0
Save
13

BigNeuron: A resource to benchmark and predict best-performing algorithms for automated reconstruction of neuronal morphology

Linus Manubens-Gil et al.Oct 24, 2023
+62
H
Z
L
ABSTRACT BigNeuron is an open community bench-testing platform combining the expertise of neuroscientists and computer scientists toward the goal of setting open standards for accurate and fast automatic neuron reconstruction. The project gathered a diverse set of image volumes across several species representative of the data obtained in most neuroscience laboratories interested in neuron reconstruction. Here we report generated gold standard manual annotations for a selected subset of the available imaging datasets and quantified reconstruction quality for 35 automatic reconstruction algorithms. Together with image quality features, the data were pooled in an interactive web application that allows users and developers to perform principal component analysis, t -distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and reconstruction data, and benchmarking of automatic reconstruction algorithms in user-defined data subsets. Our results show that image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. By benchmarking automatic reconstruction algorithms, we observed that diverse algorithms can provide complementary information toward obtaining accurate results and developed a novel algorithm to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms. Finally, to aid users in predicting the most accurate automatic reconstruction results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic reconstructions.
7

MorphoHub: A Platform for Petabyte-Scale Multi-Morphometry Generation

Shengdian Jiang et al.Oct 24, 2023
+11
L
Y
S
Abstract Recent advances in neuroscience make the extraction of full neuronal morphology at whole brain dataset available. To produce quality morphometry at large scale, it is highly desirable but extremely challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database. Here, we developed a multi-level method to produce high quality somatic, dendritic, axonal, and potential synaptic morphometry, which was made possible by utilizing necessary petabyte hardware and software platform to optimize both the data and workflow management. Our method also boosts data sharing and remote collaborative validation. We highlight a petabyte application dataset involving 62 whole mouse brains, from which we identified 50,233 somata of individual neurons, profiled the dendrites of 11,322 neurons, reconstructed the full 3-D morphology of more than one thousand neurons including their dendrites and full axons, and detected million scale putative synaptic sites derived from axonal boutons. Analysis and simulation of these data indicate the promise of this approach for modern large-scale morphology applications.
7
Citation3
0
Save
0

Formin3 regulates dendritic architecture via microtubule stabilization and is required for somatosensory nociceptive behavior

Ravi Das et al.May 7, 2020
+6
J
J
R
Abstract The acquisition, maintenance and modulation of dendritic architecture are critical to neuronal form, plasticity and function. Morphologically, dendritic shape impacts functional connectivity and is largely mediated by organization and dynamics of cytoskeletal fibers that provide the underlying scaffold and tracks for intracellular trafficking. Identifying molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding mechanistic links between cytoskeletal organization and neuronal function. In a neurogenomic-driven genetic screen of cytoskeletal regulatory molecules, we identified Formin3 (Form3) as a critical regulator of cytoskeletal architecture in Drosophila nociceptive sensory neurons. Form3 is a member of the conserved Formin family of multi-functional cytoskeletal regulators and time course analyses reveal Form3 is cell-autonomously required for maintenance of complex dendritic arbors. Cytoskeletal imaging demonstrates form3 mutants exhibit a specific destabilization of the dendritic microtubule (MT) cytoskeleton, together with defective dendritic trafficking of mitochondria, satellite Golgi and the TRPA channel Painless. Biochemical studies reveal Form3 directly interacts with MTs via FH1-FH2 domains and promotes MT stabilization via acetylation. Neurologically, mutations in human Inverted Formin 2 ( INF2; ortholog of form3 ) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons results in a severe impairment in noxious heat evoked behaviors. Expression of the INF2 FH1-FH2 domains rescues form3 defects in MT stabilization and nocifensive behavior revealing conserved functions in regulating the cytoskeleton and sensory behavior thereby providing novel mechanistic insights into potential etiologies of CMT sensory neuropathies. Significance Statement Mechanisms governing cytoskeletal architecture are critical in regulating neural function as aberrations are linked to a broad spectrum of neurological and neurocognitive disorders. Formins are important cytoskeletal regulators however their mechanistic roles in neuronal architecture are poorly understood. We demonstrate mutations in Drosophila formin3 lead to progressive destabilization of the dendritic microtubule cytoskeleton resulting in severely reduced arborization coupled to impaired organelle and ion channel trafficking, as well as nociceptive sensitivity. INF2 mutations are implicated in CMT sensory neuropathies, and INF2 expression can rescue microtubule and nociceptive behavioral defects in form3 mutants. While CMT sensory neuropathies have been linked to defects in axonal development and myelination, our studies connect dendritic cytoskeletal defects with peripheral insensitivity suggesting possible alternative etiological bases.
0
Citation2
0
Save
2

Machine Learning Classification Reveals Robust Morphometric Biomarker of Glial and Neuronal Arbors

Masood Akram et al.Oct 24, 2023
G
Q
M
Abstract Neurons and glia are the two main cell classes in the nervous systems of most animals. Although functionally distinct, neurons and glia are both characterized by multiple branching arbors stemming from the cell bodies. Glial processes are generally known to form smaller trees than neuronal dendrites. However, the full extent of morphological differences between neurons and glia in multiple species and brain regions has not yet been characterized, nor is it known whether these cells can be reliably distinguished based on geometric features alone. Here, we show that multiple supervised learning algorithms (K-nearest neighbor, random forest, and support vector machine) deployed on a large database of morphological reconstructions can systematically classify neuronal and glial arbors with nearly perfect accuracy and precision. Moreover, we report multiple morphometric properties, both size-related and size-independent, that differ substantially between these cell types. In particular, we newly identify an individual morphometric measurement, Average Branch Euclidean Length (ABEL) that can robustly separate neurons from glia across multiple animal models, a broad diversity of experimental conditions, and anatomical areas, with the notable exception of the cerebellum. We discuss the practical utility and physiological interpretation of this discovery.
2
Paper
Citation2
0
Save
Load More