MA
Megan Albertelli
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
21
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Tabula Microcebus: A transcriptomic cell atlas of mouse lemur, an emerging primate model organism

Camille Ezran et al.Dec 12, 2021
+36
S
S
C
ABSTRACT Mouse lemurs are the smallest, fastest reproducing, and among the most abundant primates, and an emerging model organism for primate biology, behavior, health and conservation. Although much has been learned about their physiology and their Madagascar ecology and phylogeny, little is known about their cellular and molecular biology. Here we used droplet- and plate-based single cell RNA-sequencing to profile 226,000 cells from 27 mouse lemur organs and tissues opportunistically procured from four donors clinically and histologically characterized. Using computational cell clustering, integration, and expert cell annotation, we defined and biologically organized over 750 mouse lemur molecular cell types and their full gene expression profiles. These include cognates of most classical human cell types, including stem and progenitor cells, and the developmental programs for spermatogenesis, hematopoiesis, and other adult tissues. We also described dozens of previously unidentified or sparsely characterized cell types and subtypes. We globally compared cell type expression profiles to define the molecular relationships of cell types across the body, and explored primate cell and gene expression evolution by comparing mouse lemur cell transcriptomes to those of human, mouse, and macaque. This revealed cell type specific patterns of primate specialization, as well as many cell types and genes for which lemur provides a better human model than mouse. The atlas provides a cellular and molecular foundation for studying this primate model organism, and establishes a general approach for other emerging model organisms.
1
Citation18
0
Save
40

Haplotype-phased common marmoset embryonic stem cells for genome editing using CRISPR/Cas9

Bo Zhou et al.Jul 30, 2018
+11
L
S
B
ABSTRACT Due to anatomical and physiological similarities to humans, the common marmoset ( Callithrix jacchus ) is an ideal organism for the study human diseases. Researchers are currently leveraging genome-editing technologies such as CRISPR/Cas9 to genetically engineer marmosets for the in vivo biomedical modeling of human neuropsychiatric and neurodegenerative diseases. The genome characterization of these cell lines greatly reinforces these transgenic efforts. It also provides the genomic contexts required for the accurate interpretation of functional genomics data. We performed haplotype-resolved whole-genome characterization for marmoset ESC line cj367 from the Wisconsin National Primate Research Center. This is the first haplotype-resolved analysis of a marmoset genome and the first whole-genome characterization of any marmoset ESC line. We identified and phased single-nucleotide variants (SNVs) and Indels across the genome. By leveraging this haplotype information, we then compiled a list of cj367 ESC allele-specific CRISPR targeting sites. Furthermore, we demonstrated successful Cas9 Endonuclease Dead (dCas9) expression and targeted localization in cj367 as well as sustained pluripotency after dCas9 transfection by teratoma assay. Lastly, we show that these ESCs can be directly induced into functional neurons in a rapid, single-step process. Our study provides a valuable set of genomic resources for primate transgenics in this post-genome era.
40
Citation1
0
Save