LM
L.G.D. Mendonça
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
34
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

SARS-CoV-2 Assembly and Egress Pathway Revealed by Correlative Multi-modal Multi-scale Cryo-imaging

L.G.D. Mendonça et al.Nov 5, 2020
Summary Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, investigation of the SARS-CoV-2 infection in the native cellular context is scarce, and there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. Here, we investigated SARS-CoV-2 replication in Vero cells under the near-native frozen-hydrated condition using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging of the entire SARS-CoV-2 infected cell with cryo-electron tomography (cryoET) of cellular lamellae and cell periphery, as well as structure determination of viral components by subtomogram averaging. Our results reveal at the whole cell level profound cytopathic effects of SARS-CoV-2 infection, exemplified by a large amount of heterogeneous vesicles in the cytoplasm for RNA synthesis and virus assembly, formation of membrane tunnels through which viruses exit, and drastic cytoplasm invasion into nucleus. Furthermore, cryoET of cell lamellae reveals how viral RNAs are transported from double-membrane vesicles where they are synthesized to viral assembly sites; how viral spikes and RNPs assist in virus assembly and budding; and how fully assembled virus particles exit the cell, thus stablishing a model of SARS-CoV-2 genome replication, virus assembly and egress pathways.
23
Citation12
0
Save
1

HIV-2 Immature Particle Morphology Provides Insights into Gag Lattice Stability and Virus Maturation

Nathaniel Talledge et al.Feb 1, 2022
Abstract Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used single particle cryo-electron microscopy with a retrovirus to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.
1
Citation2
0
Save
19

UVC inactivation of pathogenic samples suitable for cryoEM analysis

JS Depelteau et al.Jul 6, 2021
Abstract Cryo-electron microscopy has become an essential tool to understand structure and function of biological samples, from individual proteins to whole cells. Especially for pathogens, such as disease-causing bacteria and viruses, insights gained by cryo-EM can aid in developing cures. However, due to the biosafety restrictions of human pathogens, samples are often treated by chemical fixation to render the pathogen inert, affecting the delicate ultrastructure of the sample. Alternatively, researchers use in vitro or ex vivo models, which are non-pathogenic but lack the complexity of the pathogen of interest. Here we show that ultraviolet-C (UVC) radiation at cryogenic temperatures can be used to eliminate or dramatically reduce the infectivity of two model organisms, a pathogenic bacterium ( Vibrio cholerae ) and a virus-like particle (the ICP1 bacteriophage). We show no discernable structural impact of this treatment of either sample using two cryo-EM methods: cryo-electron tomography (cryo-ET) followed by sub-tomogram averaging (STA), and single particle analysis (SPA). Additionally, we applied the UVC irradiation to the protein apoferritin (ApoF), which is a widely used test sample for high resolution SPA studies. The UVC-treated ApoF sample resulted in a 2.1 Å structure that did not reveal any discernable structural damage. Together, these results show that the UVC irradiation dose that effectively inactivates cryo-EM samples does not negatively impact their structure. This research demonstrates that UVC treatment is an effective and inexpensive addition to the cryo-EM sample preparation toolbox.
19
0
Save