JW
Jan Wysocki
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
1,293
h-index:
31
/
i10-index:
48
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Glomerular Localization and Expression of Angiotensin-Converting Enzyme 2 and Angiotensin-Converting Enzyme

Minghao Ye et al.Oct 5, 2006
Angiotensin-converting enzyme 2 (ACE2) expression has been shown to be altered in renal tubules from diabetic mice. This study examined the localization of ACE and ACE2 within the glomerulus of kidneys from control (db/m) and diabetic (db/db) mice and the effect of chronic pharmacologic ACE2 inhibition. ACE2 co-localized with glomerular epithelial cell (podocyte) markers, and its localization within the podocyte was confirmed by immunogold labeling. ACE, by contrast, was seen only in glomerular endothelial cells. By immunohistochemistry, in glomeruli from db/db mice, strong ACE staining was found more frequently than in control mice (db/db 64.6 ± 6.3 versus db/m 17.8 ± 3.4%; P < 0.005). By contrast, strong ACE2 staining in glomeruli from diabetic mice was less frequently seen than in controls (db/db 4.3 ± 2.4 versus db/m 30.6 ± 13.6%; P < 0.05). For investigation of the significance of reduced glomerular ACE2 expression, db/db mice were treated for 16 wk with a specific ACE2 inhibitor (MLN-4760) alone or combined with telmisartan, a specific angiotensin II type 1 receptor blocker. At the end of the study, glomerular staining for fibronectin, an extracellular matrix protein, was increased in both db/db and db/m mice that were treated with MLN-4760. Urinary albumin excretion (UAE) increased significantly in MLN-4760–treated as compared with vehicle-treated db/db mice (743 ± 200 versus 247 ± 53.9 μg albumin/mg creatinine, respectively; P < 0.05), and the concomitant administration of telmisartan completely prevented the increase in UAE associated with the ACE2 inhibitor (161 ± 56; P < 0.05). It is concluded that ACE2 is localized in the podocyte and that in db/db mice glomerular expression of ACE2 is reduced whereas glomerular ACE expression is increased. The finding that chronic ACE2 inhibition increases UAE suggests that ACE2, likely by modulating the levels of glomerular angiotensin II via its degradation, may be a target for therapeutic interventions that aim to reduce albuminuria and glomerular injury.
0
Citation467
0
Save
0

ACE and ACE2 Activity in Diabetic Mice

Jan Wysocki et al.Jun 27, 2006
ACE-related carboxypeptidase (ACE2) may counterbalance the angiotensin (ANG) II–promoting effects of ACE in tissues where both enzymes are found. Alterations in renal ACE and ACE2 expression have been described in experimental models of diabetes, but ACE2 activity was not assessed in previous studies. We developed a microplate-based fluorometric method for the concurrent determination of ACE and ACE2 activity in tissue samples. Enzymatic activity (relative fluorescence unit [RFU] · μg protein−1 · h−1) was examined in ACE and ACE2 knockout mice and in two rodent models of diabetes, the db/db and streptozotocin (STZ)-induced diabetic mice. In kidney cortex, preparations consisting mainly of proximal tubules and cortical collecting tubules, ACE2 activity had a strong positive correlation with ACE2 protein expression (90-kDa band) in both knockout models and their respective wild-type littermates (r = 0.94, P &lt; 0.01). ACE activity, likewise, had a strong positive correlation with renal cortex ACE protein expression (170-kDa band) (r = 0.838, P &lt; 0.005). In renal cortex, ACE2 activity was increased in both models of diabetes (46.7 ± 4.4 vs. 22.0 ± 4.7 in db/db and db/m, respectively, P &lt; 0.01, and 22.1 ± 2.8 vs. 13.1 ± 1.5 in STZ-induced diabetic versus untreated mice, respectively, P &lt; 0.05). ACE2 mRNA levels in renal cortex from db/db and STZ-induced diabetic mice, by contrast, were not significantly different from their respective controls. In cardiac tissue, ACE2 activity was lower than in renal cortex, and there were no significant differences between diabetic and control mice (db/db 2.03 ± 0.23 vs. db/m 1.85 ± 0.10; STZ-induced diabetic 0.42 ± 0.04 vs. untreated 0.52 ± 0.07 mice). ACE2 activity in renal cortex correlated positively with ACE2 protein in db/db and db/m mice (r = 0.666, P &lt; 0.005) as well as in STZ-induced diabetic and control mice (r = 0.621, P &lt; 0.05) but not with ACE2 mRNA (r = −0.468 and r = −0.522, respectively). We conclude that in renal cortex from diabetic mice, ACE2 expression is increased at the posttranscriptional level. The availability of an assay for concurrent measurement of ACE and ACE2 activity should be helpful in the evaluation of kidney-specific alterations in the balance of these two carboxypeptidases, which are involved in the control of local ANG II formation and degradation.
0

Targeting the Degradation of Angiotensin II With Recombinant Angiotensin-Converting Enzyme 2

Jan Wysocki et al.Dec 1, 2009
Angiotensin (Ang)-converting enzyme 2 (ACE2) cleaves Ang II to form Ang-(1-7). Here we examined whether soluble human recombinant ACE2 (rACE2) can efficiently lower Ang II and increase Ang-(1-7) and whether rACE2 can prevent hypertension caused by Ang II infusion as a result of systemic versus local mechanisms of ACE2 activity amplification. rACE2 was infused via osmotic minipumps for 3 days in conscious mice or acutely in anesthetized mice. rACE2 caused a dose-dependent increase in serum ACE2 activity but had no effect on kidney or cardiac ACE2 activity. After Ang II infusion (40 pmol/min), rACE2 (1 mg/kg per day) resulted in normalization of systolic blood pressure and plasma Ang II. In acute studies, rACE2 (1 mg/kg) prevented the rapid hypertensive effect of Ang II (0.2 mg/kg), and this was associated with both a decrease in Ang II and an increase in Ang-(1-7) in plasma. Moreover, during infusion of Ang II, the effect of rACE2 on blood pressure was unaffected by a specific Ang-(1-7) receptor blocker, A779 (0.2 mg/kg), and infusing supraphysiologic levels of Ang-(1-7) (0.2 mg/kg) had no effect on blood pressure. We conclude that, during Ang II infusion, rACE2 effectively degrades Ang II and, in the process, normalizes blood pressure. The mechanism of rACE2 action results from an increase in systemic, not tissue, ACE2 activity and the lowering of plasma Ang II rather than the attendant increase in Ang-(1-7). Increasing ACE2 activity may provide a new therapeutic target in states of Ang II overactivity by enhancing its degradation, an approach that differs from the current focus on blocking Ang II formation and action.
0

Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent

Péter Serfözö et al.Dec 2, 2019
The Ang II (Angiotensin II)-Angiotensin-(1-7) axis of the Renin Angiotensin System encompasses 3 enzymes that form Angiotensin-(1-7) [Ang-(1-7)] directly from Ang II: ACE2 (angiotensin-converting enzyme 2), PRCP (prolylcarboxypeptidase), and POP (prolyloligopeptidase). We investigated their relative contribution to Ang-(1-7) formation in vivo and also ex vivo in serum, lungs, and kidneys using models of genetic ablation coupled with pharmacological inhibitors. In wild-type (WT) mice, infusion of Ang II resulted in a rapid increase of plasma Ang-(1-7). In ACE2 −/− / PRCP −/− mice, Ang II infusion resulted in a similar increase in Ang-(1-7) as in WT (563±48 versus 537±70 fmol/mL, respectively), showing that the bulk of Ang-(1-7) formation in circulation is essentially independent of ACE2 and PRCP. By contrast, a POP inhibitor, Z-Pro-Prolinal reduced the rise in plasma Ang-(1-7) after infusing Ang II to control WT mice. In POP −/− mice, the increase in Ang-(1-7) was also blunted as compared with WT mice (309±46 and 472±28 fmol/mL, respectively P =0.01), and moreover, the rate of recovery from acute Ang II-induced hypertension was delayed ( P =0.016). In ex vivo studies, POP inhibition with ZZP reduced Ang-(1-7) formation from Ang II markedly in serum and in lung lysates. By contrast, in kidney lysates, the absence of ACE2, but not POP, obliterated Ang-(1-7) formation from added Ang II. We conclude that POP is the main enzyme responsible for Ang II conversion to Ang-(1-7) in the circulation and in the lungs, whereas Ang-(1-7) formation in the kidney is mainly ACE2-dependent.
0
Citation189
0
Save
16

A novel soluble ACE2 protein totally protects from lethal disease caused by SARS-CoV-2 infection

Luise Hassler et al.Mar 15, 2021
Abstract Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2), which is membrane bound, as its initial cell contact receptor preceding viral entry. Here we report a human soluble ACE2 variant fused with a 5kD albumin binding domain (ABD) and bridged via a dimerization motif hinge-like 4-cysteine dodecapeptide, which we term ACE2 1-618-DDC-ABD. This protein is enzymatically active, has increased duration of action in vivo conferred by the ABD-tag, and displays 20-30-fold higher binding affinity to the SARS-CoV-2 receptor binding domain than its des-DDC monomeric form (ACE2 1-618-ABD) due to DDC-linked dimerization. ACE2 1-618-DDC-ABD was administered for 3 consecutive days to transgenic k18-hACE2 mice, a model that develops lethal SARS-CoV-2 infection, to evaluate the preclinical preventative/ therapeutic value for COVID-19. Mice treated with ACE2 1-618-DDC-ABD developed a mild to moderate disease for the first few days assessed by a clinical score and modest weight loss. The untreated control animals, by contrast, became severely ill and had to be sacrificed by day 6/7 and lung histology revealed extensive pulmonary alveolar hemorrhage and mononuclear infiltrates. At 6 days, mortality was totally prevented in the treated group, lung histopathology was improved and viral titers markedly reduced. This demonstrates for the first time in vivo the preventative/ therapeutic potential of a novel soluble ACE2 protein in a preclinical animal model.
16
Citation16
0
Save
6

Kidney and Lung ACE2 expression after an ACE inhibitor or an Ang II receptor blocker: implications for COVID-19

Jan Wysocki et al.May 20, 2020
ABSTRACT Background There have been concerns that ACE inhibitors and Ang II receptor blockers may cause an increase in ACE2, the main receptor for SARs-CoV-2. Methods Kidneys from two genetic models of kidney ACE ablation and mice treated with captopril or telmisartan were used to examine ACE2 in isolated kidney and lung membranes. Results In a global ACE KO mice, ACE2 protein abundance in kidney membranes was reduced to 42 % of wild type, p < 0.05. In ACE 8/8 mice that over-expresses cardiac ACE protein but also has no kidney ACE expression, ACE2 protein in kidney membranes was also decreased (38 % of the WT, p<0.01). In kidney membranes from mice that received captopril or telmisartan for 2 weeks there was a reduction in ACE2 protein (37% in captopril treated p<0.01) and 76% in telmisartan treated p <0.05). In lung membranes the expression of ACE2 was very low and not detected by western blotting but no significant differences in terms of ACE2 activity could be detected in mice treated with captopril (118% of control) or telmisartan (93% of control). Conclusions Genetic kidney ACE protein deficiency, suppressed enzymatic activity by Captopril or blockade of the AT1 receptor with telmisartan are all associated with a decrease in ACE2 in kidney membranes. ACE2 protein in kidney or lungs is decreased or unaffected by RAS blockers indicating that these medications can not pose a risk for SARS-CoV-2 infection related to amplification of ACE2 at these two target sites for viral entry.
6
Citation4
0
Save
11

Superiority of intranasal over systemic administration of bioengineered soluble ACE2 for survival and brain protection against SARS-CoV-2 infection

Luise Hassler et al.Dec 6, 2022
ABSTRACT The present study was designed to investigate the effects of a soluble ACE2 protein termed ACE2 618-DDC-ABD, bioengineered to have long duration of action and high binding affinity to SARS-CoV-2, when administered either intranasally (IN) or intraperitoneally (IP) and before or after SARS-CoV-2 inoculation. K18hACE2 mice permissive for SARS-CoV-2 infection were inoculated with 2×10 4 PFU wildtype SARS-CoV-2. In one protocol, ACE2 618-DDC-ABD was given either IN or IP, pre- and post-viral inoculation. In a second protocol, ACE2 618-DDC-ABD was given either IN, IP or IN+IP but only post-viral inoculation. In addition, A549 and Vero E6 cells were used to test neutralization of SARS-CoV-2 variants by ACE2 618-DDC-ABD at different concentrations. Survival by day 5 was 0% in infected untreated mice, and 40% in mice from the ACE2 618-DDC-ABD IP-pre treated group. By contrast, in the IN-pre group survival was 90%, histopathology of brain and kidney was essentially normal and markedly improved in the lungs. When ACE2 618-DDC-ABD was administered only post viral inoculation, survival was 30% in the IN+IP group, 20% in the IN and 0% in the IP group. Brain SARS-CoV-2 titers were high in all groups except for the IN-pre group where titers were undetectable in all mice. In cells permissive for SARS-CoV-2 infection, ACE2 618-DDC-ABD neutralized wildtype SARS-CoV-2 at high concentrations, whereas much lower concentrations neutralized omicron BA. 1. We conclude that ACE2 618-DDC-ABD provides much better survival and organ protection when administered intranasally than when given systemically or after viral inoculation and that lowering brain titers is a critical determinant of survival and organ protection.
20

Circulating ACE2-expressing Exosomes Block SARS-CoV-2 Infection as an Innate Antiviral Mechanism

Lamiaa El-Shennawy et al.Dec 4, 2020
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) with innate and adaptive immune response triggered in such patients by viral antigens. Both convalescent plasma and engineered high affinity human monoclonal antibodies have shown therapeutic potential to treat COVID-19. Whether additional antiviral soluble factors exist in peripheral blood remain understudied. Herein, we detected circulating exosomes that express the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme 2 (ACE2) in plasma of both healthy donors and convalescent COVID-19 patients. We demonstrated that exosomal ACE2 competes with cellular ACE2 for neutralization of SARS-CoV-2 infection. ACE2-expressing (ACE2 + ) exosomes blocked the binding of the viral spike (S) protein RBD to ACE2 + cells in a dose dependent manner, which was 400- to 700-fold more potent than that of vesicle-free recombinant human ACE2 extracellular domain protein (rhACE2). As a consequence, exosomal ACE2 prevented SARS-CoV-2 pseudotype virus tethering and infection of human host cells at a 50-150 fold higher efficacy than rhACE2. A similar antiviral activity of exosomal ACE2 was further demonstrated to block wild-type live SARS-CoV-2 infection. Of note, depletion of ACE2 + exosomes from COVID-19 patient plasma impaired the ability to block SARS-CoV-2 RBD binding to host cells. Our data demonstrate that ACE2 + exosomes can serve as a decoy therapeutic and a possible innate antiviral mechanism to block SARS-CoV-2 infection.
0

Altered distribution and loss of ACE2 into the urine in acute kidney injury

Mina Shirazi et al.Jul 4, 2024
There are diverse pathophysiological mechanisms involved in acute kidney injury (AKI). Among them, overactivity of the renin angiotensin system (RAS) has been described. Angiotensin converting enzyme 2 (ACE2) is a tissue RAS enzyme expressed in the apical border of proximal tubules. Given the important role of ACE2 in the metabolism of Angiotensin II this study was aimed to characterize kidney and urinary ACE2 in amouse model of AKI. Ischemia reperfusion injury (IRI) was induced in C57BL/6 mice by clamping of the left renal artery followed by removal of the right kidney. In kidneys harvested 48 hours after IRI, immunostaining revealed a striking maldistribution of ACE2 including spillage into the tubular lumen and presence of ACE2 positive luminal casts in the medulla. In cortical membranes ACE2 protein and enzymatic activity were both markedly reduced (37±4 vs. 100±6 ACE2/ß-Actin, P=0.0004 and 96±14 vs. 152±6 RFU/μg protein/h P=0.006). In urine, the full-length membrane bound ACE2 protein (100kD) was markedly increased (1120±405 vs. 100±46 ACE2/µg Crea, P=0.04) and casts stained for ACE2 were recovered in the urine sediment. In AKI caused by IRI there is a marked loss of ACE2 from the apical tubular border with deposition of ACE2 positive material in the medulla and increased urinary excretion of the full length-membrane bound ACE2 protein. The deficiency of tubular ACE2 in AKI suggests that provision of this enzyme could have therapeutic applications and that its excretion in the urine may also serve as a diagnostic marker of severe proximal tubular injury.