GK
Gary Karpen
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(83% Open Access)
Cited by:
9,454
h-index:
62
/
i10-index:
101
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phase separation drives heterochromatin domain formation

Amy Strom et al.Jun 20, 2017
HP1a can nucleate into foci that display liquid properties during the early stages of heterochromatin domain formation in Drosophila embryos, suggesting that the repressive action of heterochromatin may be mediated in part by emergent properties of phase separation. The gene-silencing action of heterochromatin is thought to arise from the spread of proteins such as HP1 that compact the underlying chromatin and recruit repressors. Two papers in this issue demonstrate that HP1α has the ability to form phase-separated droplets. Gary Karpen and colleagues show that HP1α can nucleate into foci that display liquid properties during the early stages of heterochromatin domain formation in Drosophila embryos. Geeta Narlikar and colleagues demonstrate that human HP1α protein also forms phase-separated droplets. Phosphorylation or DNA binding promotes the physical partitioning of HP1α out of the soluble aqueous phase into droplets. These related findings suggest that the repressive action of heterochromatin may be in part mediated by the phase separation of HP1, with the droplets being initiated or dissolved by various ligands depending on nuclear context. Constitutive heterochromatin is an important component of eukaryotic genomes that has essential roles in nuclear architecture, DNA repair and genome stability1, and silencing of transposon and gene expression2. Heterochromatin is highly enriched for repetitive sequences, and is defined epigenetically by methylation of histone H3 at lysine 9 and recruitment of its binding partner heterochromatin protein 1 (HP1). A prevalent view of heterochromatic silencing is that these and associated factors lead to chromatin compaction, resulting in steric exclusion of regulatory proteins such as RNA polymerase from the underlying DNA3. However, compaction alone does not account for the formation of distinct, multi-chromosomal, membrane-less heterochromatin domains within the nucleus, fast diffusion of proteins inside the domain, and other dynamic features of heterochromatin. Here we present data that support an alternative hypothesis: that the formation of heterochromatin domains is mediated by phase separation, a phenomenon that gives rise to diverse non-membrane-bound nuclear, cytoplasmic and extracellular compartments4. We show that Drosophila HP1a protein undergoes liquid–liquid demixing in vitro, and nucleates into foci that display liquid properties during the first stages of heterochromatin domain formation in early Drosophila embryos. Furthermore, in both Drosophila and mammalian cells, heterochromatin domains exhibit dynamics that are characteristic of liquid phase-separation, including sensitivity to the disruption of weak hydrophobic interactions, and reduced diffusion, increased coordinated movement and inert probe exclusion at the domain boundary. We conclude that heterochromatic domains form via phase separation, and mature into a structure that includes liquid and stable compartments. We propose that emergent biophysical properties associated with phase-separated systems are critical to understanding the unusual behaviours of heterochromatin, and how chromatin domains in general regulate essential nuclear functions.
0
Citation1,614
0
Save
0

Comprehensive analysis of the chromatin landscape in Drosophila melanogaster

Peter Kharchenko et al.Dec 22, 2010
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function. Three papers in this issue of Nature report on the modENCODE initiative, which aims to characterize functional DNA elements in the fruitfly Drosophila melanogaster and the roundworm Caenorhabditis elegans. Kharchenko et al. present a genome-wide chromatin landscape of the fruitfly, based on 18 histone modifications. They describe nine prevalent chromatin states. Integrating these analyses with other data types reveals individual characteristics of different genomic elements. Graveley et al. have used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages of the fruitfly. Among the results are scores of new genes, coding and non-coding transcripts, as well as splicing and editing events. Finally, Nègre et al. have produced a map of the regulatory part of the fruitfly genome, defining a vast array of putative regulatory elements, such as enhancers, promoters, insulators and silencers. As part of the modENCODE initiative, which aims to characterize functional DNA elements in D. melanogaster and C. elegans, this study presents a genome-wide chromatin landscape of the fruitfly, based on 18 histone modifications. Nine prevalent chromatin states are described. Integrating these analyses with other data types reveals individual characteristics of different genomic elements. The work provides a resource of unprecedented scale for future experimental investigations.
0
Citation846
0
Save
0

Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin

Beth Sullivan et al.Oct 10, 2004
Post-translational histone modifications regulate epigenetic switching between different chromatin states. Distinct histone modifications, such as acetylation, methylation and phosphorylation, define different functional chromatin domains, and often do so in a combinatorial fashion. The centromere is a unique chromosomal locus that mediates multiple segregation functions, including kinetochore formation, spindle-mediated movements, sister cohesion and a mitotic checkpoint. Centromeric (CEN) chromatin is embedded in heterochromatin and contains blocks of histone H3 nucleosomes interspersed with blocks of CENP-A nucleosomes, the histone H3 variant that provides a structural and functional foundation for the kinetochore. Here, we demonstrate that the spectrum of histone modifications present in human and Drosophila melanogaster CEN chromatin is distinct from that of both euchromatin and flanking heterochromatin. We speculate that this distinct modification pattern contributes to the unique domain organization and three-dimensional structure of centromeric regions, and/or to the epigenetic information that determines centromere identity.
0
Citation551
0
Save
0

The Release 6 reference sequence of the Drosophila melanogaster genome

Roger Hoskins et al.Jan 14, 2015
Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.
0
Citation417
0
Save
0

Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis.

Gary Karpen et al.Nov 1, 1992
Abstract We investigated whether single P element insertional mutagenesis could be used to analyze heterochromatin within the Drosophila minichromosome Dp1187. Forty-five insertions of the P[lacZ,rosy+] element onto Dp1187 (recovered among 7,825 transpositions) were highly clustered. None was recovered in centromeric heterochromatin, but 39 occurred about 40 kb from the distal telomere within a 4.7-kb hotspot containing tandem copies of a novel 1.8-kb repetitive DNA sequence. The DNA within and distal to this region lacked essential genes and displayed several other properties characteristic of heterochromatin. The rosy+ genes within the inserted transposons were inhibited by position-effect variegation, and the subtelomeric region was underrepresented in polytene salivary gland cells. These experiments demonstrated that P elements preferentially transpose into a small subset of heterochromatic sites, providing a versatile method for studying the structure and function of these chromosome regions. This approach revealed that a Drosophila chromosome contains a large region of subtelomeric heterochromatin with specific structural and genetic properties.
0
Citation400
0
Save
Load More