LA
Leonid Andronov
Author with expertise in Mechanisms and Applications of RNA Interference
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
12
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Activated interstitial macrophages are a predominant target of viral takeover and focus of inflammation in COVID-19 initiation in human lung

Ting-Hsuan Wu et al.May 10, 2022
+22
A
K
T
ABSTRACT Early stages of deadly respiratory diseases such as COVID-19 have been challenging to elucidate due to lack of an experimental system that recapitulates the cellular and structural complexity of the human lung while allowing precise control over disease initiation and systematic interrogation of molecular events at cellular resolution. Here we show healthy human lung slices cultured ex vivo can be productively infected with SARS-CoV-2, and the cellular tropism of the virus and its distinct and dynamic effects on host cell gene expression can be determined by single cell RNA sequencing and reconstruction of “infection pseudotime” for individual lung cell types. This revealed that the prominent SARS-CoV-2 target is a population of activated interstitial macrophages (IMs), which as infection proceeds accumulate thousands of viral RNA molecules per cell, comprising up to 60% of the cellular transcriptome and including canonical and novel subgenomic RNAs. During viral takeover of IMs, there is cell-autonomous induction of a pro-fibrotic program ( TGFB1 , SPP1 ), and an inflammatory program characterized by the early interferon response, chemokines ( CCL2 , 7, 8 , 13, CXCL10 ) and cytokines ( IL6, IL10) , along with destruction of cellular architecture and formation of dense viral genomic RNA bodies revealed by super-resolution microscopy. In contrast, alveolar macrophages (AMs) showed neither viral takeover nor induction of a substantial inflammatory response, although both purified AMs and IMs supported production of infectious virions. Spike-dependent viral entry into AMs was neutralized by blockade of ACE2 or Sialoadhesin/CD169, whereas IM entry was neutralized only by DC-SIGN/CD209 blockade. These results provide a molecular characterization of the initiation of COVID-19 in human lung tissue, identify activated IMs as a prominent site of viral takeover and focus of inflammation and fibrosis, and suggest therapeutic targeting of the DC-SIGN/CD209 entry mechanism to prevent IM infection, destruction and early pathology in COVID-19 pneumonia. Our approach can be generalized to define the initiation program and evaluate therapeutics for any human lung infection at cellular resolution.
6
Citation10
5
Save
0

Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles

Leonid Andronov et al.May 31, 2024
+7
Y
M
L
Abstract The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelles, the sites of replication of viral genomic RNA (vgRNA). To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain numerous vgRNA molecules along with the replication enzymes and clusters of viral double-stranded RNA (dsRNA). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of endoplasmic reticulum (ER) markers and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are encapsulated into DMVs, which have membranes derived from the host ER. These organelles merge into larger vesicle packets as infection advances. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.
0
Citation2
0
Save
1

UBAP2L drives scaffold assembly of nuclear pore complexes at the intact nuclear envelope

Yongxiang Liao et al.Aug 21, 2023
+17
X
R
Y
Abstract Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a direct role of ubiquitin-associated protein 2-like (UBAP2L) in the biogenesis of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and drives the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L facilitates the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact nuclear envelope. Teaser Liao et al. show how UBAP2L drives the assembly of the scaffold elements into symmetrical and functional NPCs at the nuclear envelope in human cells.
13

A spectral demixing method for high-precision multi-color localization microscopy

Leonid Andronov et al.Dec 23, 2021
B
D
R
L
Abstract Single molecule localization microscopy (SMLM) with a dichroic image splitter can provide invaluable multi-color information regarding colocalization of individual molecules, but it often suffers from technical limitations. So far, demixing algorithms give suboptimal results in terms of localization precision and correction of chromatic aberrations. Here we present an image splitter based multi-color SMLM method (splitSMLM) that offers much improved localization precision & drift correction, compensation of chromatic aberrations, and optimized performance of fluorophores in a specific buffer to equalize their reactivation rates for simultaneous imaging. A novel spectral demixing algorithm, SplitViSu, fully preserves localization precision with essentially no data loss and corrects chromatic aberrations at the nanometer scale. Multi-color performance is further improved by using optimized fluorophore and filter combinations. Applied to three-color imaging of the nuclear pore complex (NPC), this method provides a refined positioning of the individual NPC proteins and reveals that Pom121 clusters act as NPC deposition loci, hence illustrating strength and general applicability of the method.
0

3D clustering analysis of super-resolution microscopy data by 3D Voronoi tessellations

Leonid Andronov et al.Jun 7, 2017
+5
K
J
L
Single-molecule localization microscopy (SMLM) can play an important role in integrated structural biology approaches for example at the interface of cryo electron microscopy (cryo-EM), X-ray crystallography, NMR and fluorescence imaging to identify, localize and determine the 3D structure of cellular structures. While many tools exist for the 3D analysis and visualisation of crystal or cryo-EM structures little exists for 3D SMLM data which can provide fascinating insights but are particularly challenging to analyze in three dimensions especially in a dense cellular context. We developed 3DClusterViSu, a method based on 3D Voronoi tessellations that allows local density estimation, segmentation & quantification of 3D SMLM data and visualization of protein clusters within a 3D tool. We show its robust performance on microtubules and histone proteins H2B and CENP-A with distinct spatial distributions. 3DClusterViSu will favor multi-scale and multi-resolution synergies to allow integrating molecular and cellular levels in the analysis of macromolecular complexes.
0

Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles

Leonid Andronov et al.Jan 1, 2023
+8
M
L
L
The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelle where the replication of viral genomic RNA (vgRNA) occurs. To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain vgRNA clusters along with viral double-stranded RNA (dsRNA) clusters and the replication enzyme, encapsulated by membranes derived from the host endoplasmic reticulum (ER). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of ER labels and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are enclosed by DMVs at early infection stages which then merge into vesicle packets as infection progresses. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.