ZZ
Zinan Zhou
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
286
h-index:
17
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cerebral cavernous malformations arise from endothelial gain of MEKK3–KLF2/4 signalling

Zinan Zhou et al.Mar 29, 2016
Gain of MEKK3 signalling is shown to cause cerebral cavernous malformations (CCMs) via activation of the target genes Klf2 and Klf4; endothelial-specific loss of MEKK3, KLF2 or KLF4 prevents lesion formation and lethality in a mouse CCM model. Mark Kahn and colleagues identify a causal mechanism for the development of cerebral cavernous malformations (CCMs) — vascular malformations that cause stroke and seizures. The CCM complex is known to regulate MEKK3 during heart development. Here the authors show that gain of MEKK3 signalling is causal to CCM development via activating the MEKK3 target genes Klf2 and Klf4. Endothelial-specific loss of MEKK3, KLF2 or KLF4 rescues lethality in a mouse CCM model. Cerebral cavernous malformations (CCMs) are common inherited and sporadic vascular malformations that cause strokes and seizures in younger individuals1. CCMs arise from endothelial cell loss of KRIT1, CCM2 or PDCD10, non-homologous proteins that form an adaptor complex2. How disruption of the CCM complex results in disease remains controversial, with numerous signalling pathways (including Rho3,4, SMAD5 and Wnt/β-catenin6) and processes such as endothelial–mesenchymal transition (EndMT)5 proposed to have causal roles. CCM2 binds to MEKK3 (refs 7, 8, 9, 10, 11), and we have recently shown that CCM complex regulation of MEKK3 is essential during vertebrate heart development12. Here we investigate this mechanism in CCM disease pathogenesis. Using a neonatal mouse model of CCM disease, we show that expression of the MEKK3 target genes Klf2 and Klf4, as well as Rho and ADAMTS protease activity, are increased in the endothelial cells of early CCM lesions. By contrast, we find no evidence of EndMT or increased SMAD or Wnt signalling during early CCM formation. Endothelial-specific loss of Map3k3 (also known as Mekk3), Klf2 or Klf4 markedly prevents lesion formation, reverses the increase in Rho activity, and rescues lethality. Consistent with these findings in mice, we show that endothelial expression of KLF2 and KLF4 is increased in human familial and sporadic CCM lesions, and that a disease-causing human CCM2 mutation abrogates the MEKK3 interaction without affecting CCM complex formation. These studies identify gain of MEKK3 signalling and KLF2/4 function as causal mechanisms for CCM pathogenesis that may be targeted to develop new CCM therapeutics.
0
Citation262
0
Save
104

Contrasting patterns of somatic mutations in neurons and glia reveal differential predisposition to disease in the aging human brain

Javier Ganz et al.Jan 14, 2023
SUMMARY Characterizing the mechanisms of somatic mutations in the brain is important for understanding aging and disease, but little is known about the mutational patterns of different cell types. We performed whole-genome sequencing of 71 oligodendrocytes and 51 neurons from neurotypical individuals (0.4 to 104 years old) and identified >67,000 somatic single nucleotide variants (sSNVs) and small insertions and deletions (indels). While both cell types accumulate mutations with age, oligodendrocytes accumulate sSNVs 69% faster than neurons (27/year versus 16/year) whereas indels accumulate 42% slower (1.8/year versus 3.1/year). Correlation with single-cell RNA and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These patterns highlight differences in the mutagenic processes in glia and neurons and suggest cell type-specific, age-related contributions to neurodegeneration and oncogenesis.
104
Citation5
0
Save
0

Somatic cancer driver mutations are enriched and associated with inflammatory states in Alzheimer’s disease microglia

August Huang et al.Jan 4, 2024
Summary Alzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β and tau 1,2 . Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis 1–5 , though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases 6,7 . Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (∼two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH) 8,9 . Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH 10,11 . Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.
0
Citation3
0
Save
0

Somatic Mosaicism in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Reveals Widespread Degeneration from Focal Mutations

Zinan Zhou et al.Jan 1, 2023
Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.6% of ALS, and 26.5% of FTD cases. Predicted pathogenic somatic mutations in ALS/FTD genes were observed in 2.7% of sALS and sFTD cases that did not carry known pathogenic or novel germline mutations. Somatic mutations showed low variant allele fraction (typically <2%) and were often restricted to the region of initial discovery, preventing detection through genetic screening in peripheral tissues. Damaging somatic mutations were preferentially enriched in primary motor cortex of sALS and prefrontal cortex of sFTD, mirroring regions most severely affected in each disease. Somatic mutation analysis of bulk RNA-seq data from brain and spinal cord from an additional 143 sALS cases and 23 controls confirmed an overall enrichment of somatic mutations in sALS. Two adult sALS cases were identified bearing pathogenic somatic mutations in DYNC1H1 and LMNA, two genes associated with pediatric motor neuron degeneration. Our study suggests that somatic mutations in fALS/fFTD genes, and in genes associated with more severe diseases in the germline state, contribute to sALS and sFTD, and that mosaic mutations in a small fraction of cells in focal regions of the nervous system can ultimately result in widespread degeneration.