CS
Chase Smith
Author with expertise in Ecological Impact of Freshwater Mussels
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
8
h-index:
11
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
15

The revised reference genome of the leopard gecko (Eublepharis macularius) provides insight into the considerations of genome phasing and assembly

Brendan Pinto et al.Jan 21, 2023
Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families. Using the latest advances in genome sequencing and assembly methods, we generated one of the highest quality squamate genomes to date for the leopard gecko, Eublepharis macularius (Eublepharidae). We compared this assembly to the previous, short-read only, E. macularius reference genome published in 2016 and examined potential factors within the assembly influencing contiguity of genome assemblies using PacBio HiFi data. Briefly, the read N50 of the PacBio HiFi reads generated for this study was equal to the contig N50 of the previous E. macularius reference genome at 20.4 kilobases. The HiFi reads were assembled into a total of 132 contigs, which was further scaffolded using HiC data into 75 total sequences representing all 19 chromosomes. We identified that 9 of the 19 chromosomes were assembled as single contigs, while the other 10 chromosomes were each scaffolded together from two or more contigs. We qualitatively identified that percent repeat content within a chromosome broadly affects its assembly contiguity prior to scaffolding. This genome assembly signifies a new age for squamate genomics where high-quality reference genomes rivaling some of the best vertebrate genome assemblies can be generated for a fraction previous cost estimates. This new E. macularius reference assembly is available on NCBI at JAOPLA010000000. The genome version and its associated annotations are also available via this Figshare repository https://doi.org/10.6084/m9.figshare.20069273 .
15
Citation4
0
Save
16

A lizard is never late: squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution

Brendan Pinto et al.Jan 23, 2023
Abstract In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the “genomics age” was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012–2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
16
Citation2
0
Save
0

Mitonuclear compatibility is maintained despite relaxed selection on male mitochondrial DNA in bivalves with doubly uniparental inheritance

Chase Smith et al.Jul 11, 2024
Mitonuclear coevolution is common in eukaryotes, but bivalve lineages that have doubly uniparental inheritance (DUI) of mitochondria may be an interesting example. In this system, females transmit mtDNA (F mtDNA) to all offspring, while males transmit a different mtDNA (M mtDNA) solely to their sons. Molecular evolution and functional data suggest oxidative phosphorylation (OXPHOS) genes encoded in M mtDNA evolve under relaxed selection due to their function being limited to sperm only (vs. all other tissues for F mtDNA). This has led to the hypothesis that mitonuclear coevolution is less important for M mtDNA. Here, we use comparative phylogenetics, transcriptomics, and proteomics to understand mitonuclear interactions in DUI bivalves. We found nuclear OXPHOS proteins coevolve and maintain compatibility similarly with both F and M mtDNA OXPHOS proteins. Mitochondrial recombination did not influence mitonuclear compatibility and nuclear-encoded OXPHOS genes were not upregulated in tissues with M mtDNA to offset dysfunction. Our results support that selection maintains mitonuclear compatibility with F and M mtDNA despite relaxed selection on M mtDNA. Strict sperm transmission, lower effective population size, and higher mutation rates may explain the evolution of M mtDNA. Our study highlights that mitonuclear coevolution and compatibility may be broad features of eukaryotes.
0
Citation1
0
Save
14

A tale of two paths: The evolution of mitochondrial recombination in bivalves with doubly uniparental inheritance

Chase Smith et al.Oct 24, 2022
Abstract In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to these assumptions is called doubly uniparental inheritance (DUI): a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluscan class Bivalvia. The phylogenetic distribution of male mitochondrial DNA in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female mitochondrial DNA. In this study, we use phylogenetic methods to test male mitochondrial DNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of male mitochondrial DNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of female and male mitochondrial DNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination may be neutral but could be connected to the role of M mtDNA in sex determination or sexual development. Our results support recombination events in DUI species may occur throughout their genomes. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of male mitochondrial DNA in protein coding genes.
14
Citation1
0
Save
1

Mitonuclear sex determination? Empirical evidence from bivalves

Chase Smith et al.Jul 7, 2023
Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In bivalves, however, mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination in lineages that possess doubly uniparental inheritance (DUI). In these cases, females transmit a female mtDNA (F mtDNA) to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short non-coding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA shed a sncRNA partially within a male-specific mitochondrial gene that targeted pathways hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, non-respiratory functions and provide a first glimpse into an unorthodox sex determining system.
0

Secondary contact erodes Pleistocene diversification in a wide‐ranging freshwater mussel (Quadrula)

Sean Keogh et al.Nov 14, 2024
ABSTRACT The isolated river drainages of eastern North America serve as a natural laboratory to investigate the roles of allopatry and secondary contact in the evolutionary trajectories of recently diverged lineages. Drainage divides facilitate allopatric speciation, but due to their sensitivity to climatic and geomorphological changes, neighboring rivers frequently coalesce, creating recurrent opportunities of isolation and contact throughout the history of aquatic lineages. The freshwater mussel Quadrula quadrula is widely distributed across isolated rivers of eastern North America and possesses high phenotypic and molecular variation across its range. We integrate sequence data from three genomes, including female‐ and male‐inherited mitochondrial markers and thousands of nuclear encoded SNPs with morphology and geography to illuminate the group's divergence history. Across contemporary isolated rivers, we found continuums of molecular and morphological variation, following a pattern of isolation by distance. In contact zones, hybridization was frequent with no apparent fitness consequences, as advanced hybrids were common. Accordingly, we recognize Q. quadrula as a single cohesive species with subspecific variation ( Q. quadrula rumphiana ). Demographic modeling and divergence dating supported a divergence history characterized by allopatric vicariance followed by secondary contact, likely driven by river rearrangements and Pleistocene glacial cycles. Despite clinal range‐wide variation and hybridization in contact zones, the process‐based species delimitation tool delimitR , which considers demographic scenarios like secondary contact, supported the delimitation of the maximum number of species tested. As such, when interpreting species delimitation results, we suggest careful consideration of spatial sampling and subsequent geographic patterns of biological variation, particularly for wide‐ranging taxa.