RB
Russell Butterfield
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
863
h-index:
31
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study

Darryl Vivo et al.Sep 12, 2019
Spinal muscular atrophy (SMA) is a neurodegenerative disease associated with severe muscle atrophy and weakness in the limbs and trunk. We report interim efficacy and safety outcomes as of March 29, 2019 in 25 children with genetically diagnosed SMA who first received nusinersen in infancy while presymptomatic in the ongoing Phase 2, multisite, open-label, single-arm NURTURE trial. Fifteen children have two SMN2 copies and 10 have three SMN2 copies. At last visit, children were median (range) 34.8 [25.7-45.4] months of age and past the expected age of symptom onset for SMA Types I or II; all were alive and none required tracheostomy or permanent ventilation. Four (16%) participants with two SMN2 copies utilized respiratory support for ≥6 h/day for ≥7 consecutive days that was initiated during acute, reversible illnesses. All 25 participants achieved the ability to sit without support, 23/25 (92%) achieved walking with assistance, and 22/25 (88%) achieved walking independently. Eight infants had adverse events considered possibly related to nusinersen by the study investigators. These results, representing a median 2.9 years of follow up, emphasize the importance of proactive treatment with nusinersen immediately after establishing the genetic diagnosis of SMA in presymptomatic infants and emerging newborn screening efforts.
0
Citation474
0
Save
0

Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial

Craig McDonald et al.Jul 17, 2017
Background Duchenne muscular dystrophy (DMD) is a severe, progressive, and rare neuromuscular, X-linked recessive disease. Dystrophin deficiency is the underlying cause of disease; therefore, mutation-specific therapies aimed at restoring dystrophin protein production are being explored. We aimed to assess the efficacy and safety of ataluren in ambulatory boys with nonsense mutation DMD. Methods We did this multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at 54 sites in 18 countries located in North America, Europe, the Asia-Pacific region, and Latin America. Boys aged 7–16 years with nonsense mutation DMD and a baseline 6-minute walk distance (6MWD) of 150 m or more and 80% or less of the predicted normal value for age and height were randomly assigned (1:1), via permuted block randomisation (block size of four) using an interactive voice-response or web-response system, to receive ataluren orally three times daily (40 mg/kg per day) or matching placebo. Randomisation was stratified by age (<9 years vs ≥9 years), duration of previous corticosteroid use (6 months to <12 months vs ≥12 months), and baseline 6MWD (<350 m vs ≥350 m). Patients, parents and caregivers, investigational site personnel, PTC Therapeutics employees, and all other study personnel were masked to group allocation until after database lock. The primary endpoint was change in 6MWD from baseline to week 48. We additionally did a prespecified subgroup analysis of the primary endpoint, based on baseline 6MWD, which is reflective of anticipated rates of disease progression over 1 year. The primary analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01826487. Findings Between March 26, 2013, and Aug 26, 2014, we randomly assigned 230 patients to receive ataluren (n=115) or placebo (n=115); 228 patients comprised the intention-to-treat population. The least-squares mean change in 6MWD from baseline to week 48 was −47·7 m (SE 9·3) for ataluren-treated patients and −60·7 m (9·3) for placebo-treated patients (difference 13·0 m [SE 10·4], 95% CI −7·4 to 33·4; p=0·213). The least-squares mean change for ataluren versus placebo in the prespecified subgroups was −7·7 m (SE 24·1, 95% CI −54·9 to 39·5; p=0·749) in the group with a 6MWD of less than 300 m, 42·9 m (15·9, 11·8–74·0; p=0·007) in the group with a 6MWD of 300 m or more to less than 400 m, and −9·5 m (17·2, −43·2 to 24·2; p=0·580) in the group with a 6MWD of 400 m or more. Ataluren was generally well tolerated and most treatment-emergent adverse events were mild to moderate in severity. Eight (3%) patients (n=4 per group) reported serious adverse events; all except one event in the placebo group (abnormal hepatic function deemed possibly related to treatment) were deemed unrelated to treatment. Interpretation Change in 6MWD did not differ significantly between patients in the ataluren group and those in the placebo group, neither in the intention-to-treat population nor in the prespecified subgroups with a baseline 6MWD of less than 300 m or 400 m or more. However, we recorded a significant effect of ataluren in the prespecified subgroup of patients with a baseline 6MWD of 300 m or more to less than 400 m. Baseline 6MWD values within this range were associated with a more predictable rate of decline over 1 year; this finding has implications for the design of future DMD trials with the 6-minute walk test as the endpoint. Funding PTC Therapeutics.
0
Citation387
0
Save
0

Subacute liver injury in two young infants following gene replacement therapy for spinal muscular atrophy

Cassie Turnage et al.Jul 2, 2024
Spinal muscular atrophy is a neurodegenerative disorder resulting from the irreversible loss of anterior horn cells secondary to homozygous mutations in the survival motor neuron gene SMN1. Gene replacement therapy using a recombinant adeno-associated virus 9 vector containing an SMN1 gene construct, onasemnogene abeparvovec-xioi, was approved by the US Food and Drug Administration in May 2019. Subacute mild elevation of liver function tests following infusion has since been shown to be a common adverse event. Additionally, there have been case reports of liver failure following administration of this therapy and two reported patient deaths. While these adverse events are relatively common, they have not been reported in the youngest treated patients. We present two cases of subacute severe elevation of liver function tests >10–20 times the upper limit of normal, without progression to liver failure, following onasemnogene abeparvovec administration in young infants less than 4 weeks old. Potential mechanisms of injury, management, and implications for future treatment with onasemnogene abeparvovec and other adeno-associated virus vector gene therapies are discussed. Spinal muscular atrophy is a neurodegenerative disorder resulting from the irreversible loss of anterior horn cells secondary to homozygous mutations in the survival motor neuron gene SMN1. Gene replacement therapy using a recombinant adeno-associated virus 9 vector containing an SMN1 gene construct, onasemnogene abeparvovec-xioi, was approved by the US Food and Drug Administration in May 2019. Subacute mild elevation of liver function tests following infusion has since been shown to be a common adverse event. Additionally, there have been case reports of liver failure following administration of this therapy and two reported patient deaths. While these adverse events are relatively common, they have not been reported in the youngest treated patients. We present two cases of subacute severe elevation of liver function tests >10–20 times the upper limit of normal, without progression to liver failure, following onasemnogene abeparvovec administration in young infants less than 4 weeks old. Potential mechanisms of injury, management, and implications for future treatment with onasemnogene abeparvovec and other adeno-associated virus vector gene therapies are discussed.
0
Citation2
0
Save
5

Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing

Russell Butterfield et al.Feb 18, 2023
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
0

Access to novel therapies for Duchenne muscular dystrophy—Insights from expert treating physicians

Aravindhan Veerapandiyan et al.Jun 11, 2024
Duchenne muscular dystrophy (DMD) is a rare, X-linked, progressive, degenerative muscle disease due to pathogenic variants in the DMD gene resulting in absence of functional dystrophin protein.1 Patients with DMD have irreversible muscle damage that begins at birth, and there is histologic evidence of disease progression with progressive inflammation and fibrosis within the first years of life.2 Proactive interdisciplinary care, corticosteroids, and advances in disease-modifying treatments have changed the trajectory of the disease, leading to slower progression and improving life expectancy. This statement from clinicians who care for patients with DMD aims to provide insights into the current therapeutic landscape and access to novel therapies for DMD. Recent years have seen a remarkable number of clinical trials to evaluate the disease-modifying ability of novel therapies for DMD. In addition to corticosteroids (deflazacort and vamorolone), several gene-targeted therapies were approved by the U.S. Food and Drug Administration (FDA). These include exon-skipping agents (eteplirsen, golodirsen, viltolarsen, and casimersen) that restore the reading frame of DMD transcripts and delandistrogene moxeparvovec-rokl, an adeno-associated virus–based microdystrophin gene transfer therapy. Further, there is a robust pipeline of targeted gene-based therapies and treatments targeting downstream pathways such as regulating muscle fiber degeneration and regeneration.3-5 While existing treatments offer benefits by delaying or slowing disease progression, none provide a cure. The emergence of treatments that target the disease through multiple mechanisms underscores the importance of assessing combination therapies for DMD, akin to approaches used in treating oncological disorders. Given the progressive and irreversible nature of muscle degeneration in DMD, timely initiation of treatments is crucial. Delaying treatment initiation could result in permanent loss of motor function, underscoring the urgency of prompt intervention. DMD is a severe and progressive rare disorder with significant gaps in available treatments. The low incidence and heterogeneity in genotypes and phenotypes pose challenges in conducting traditional large-scale placebo-controlled trials in a reasonable amount of time. The restoration of shortened functional forms of dystrophin serve as biomarkers representing appropriate endpoints in the FDA's accelerated approval pathway. This pathway allows FDA approval of drugs that treat serious conditions with unmet medical need based on a surrogate endpoint that is reasonably likely to predict clinical benefit.6 It is important to note that therapies approved under accelerated approval are still required to undergo robust phase 3 confirmatory trials, providing data for traditional approval. There are currently 27 drugs approved through the accelerated pathway across rare diseases, including eteplirsen, golodirsen, viltolarsen, casimersen, and delandistrogene moxeparvovec-rokl for DMD. Once approved, these therapies are expected to be available to appropriate patients when prescribed. However, despite the clear intent of the accelerated approval pathway, access to approved therapies for patients with DMD has been difficult. The cost of new treatments, even those granted expedited approvals by the FDA, tends to be high. Obtaining approvals from payors can be challenging and time consuming, with frequent denials despite patients meeting medical necessity, often due to various reasons. Reasons given for denial for exon-skipping therapies include but are not limited to lack of clinical evidence, therapy considered as investigational, patient characteristics not meeting clinical trial criteria, nonambulatory status of patient, and lack of improvement in disease. Similar reasons have been given for denials for delandistrogene moxeparvovec-rokl. Additional barriers for this medication have included a requirement to demonstrate failure of an exon-skipping therapy in eligible patients and a policy excluding gene transfer therapies or therapies that are still in phase 3 studies despite accelerated approval. In some instances, treating providers are required to attest that the provider would not start the patient on exon-skipping agent or would discontinue exon-skipping agent if coverage for gene transfer therapy is approved—a restriction that could be considered unethical, as physicians have an obligation to consider the best care options for their patients as their disease evolves and as new treatment options become available. Specific examples of denial reasons that we have encountered in the clinical experience from different payor sources are listed in Table 1. Payors frequently employ peer review as a mechanism to postpone and deny these treatments. In principle, peer review is a necessary step in the approval process for therapies that are expensive and carry significant risks. However, it's common for the specialists conducting these peer reviews to lack expertise in neuromuscular medicine and to have little to no background in managing patients with DMD. We strongly advocate for peer-to-peer reviews to be conducted by specialists in neuromuscular medicine who have extensive experience in treating DMD patients. FDA-approved therapies, including those under accelerated approval, should not be denied to patients in the studied or approved population and should not be considered experimental or investigational. It is important to recognize that disease stability or a slowing of decline is a notable therapeutic benefit in a progressive disease such as DMD. Distinction and deviation from a well-characterized natural history of inevitable decline is success. Payor policies must respect the autonomy of treating physicians in recommending therapies based on clinical judgment. The inclusion of language restricting concurrent use of certain therapies should be carefully considered. Treating physicians should have the flexibility to recommend and prescribe therapies that would benefit patients without undue interference from payors. We urge the payors to engage and include experts in the field with direct experience in managing the care of patients with DMD when drafting coverage policies related to DMD treatments. This engagement would minimize disparities in payor policies and reduce the inequality we encounter in access to treatment. As DMD treatment continues to evolve, it is imperative for payors to regularly reassess and update policies in a timely fashion. Collaboration between experts, policymakers, and the medical community will ensure that those with DMD have timely access to FDA-approved therapies. A collective effort is required to bridge gaps in policy, enhance treatment accessibility, and foster a supportive environment for ongoing research and development in the field of DMD. Together we can develop a rational coverage policy to benefit individuals living with DMD and do so responsibly. Aravindhan Veerapandiyan: Conceptualization; Data curation; Writing—original draft; Writing—review and editing. Anne M. Connolly: Writing—original draft; Writing—review and editing. Katherine D. Mathews: Conceptualization; Writing—original draft; Writing—review and editing. Stanley Nelson: Writing—review and editing. Craig McDonald: Writing—review and editing. Richard S. Finkel: Writing—review and editing. Vettaikorumakankav Vedanarayanan: Writing—review and editing. Cuixia Tian: Writing—review and editing. Susan Apkon: Writing—review and editing. Julie A. Parsons: Writing—review and editing. Jonathan H. Soslow: Writing—review and editing. William Bryan Burnette: Writing—review and editing. Kaitlin Y. Batley: Writing—review and editing. Susan T Iannaccone: Writing—review and editing. Carolina Tesi Rocha: Writing—review and editing. Kevin M. Flanigan: Writing—review and editing. Diana Bharucha-Goebel: Writing—review and editing. Sarah Wright: Writing—review and editing. Migvis Monduy: Writing—review and editing. Simona Treidler: Writing—review and editing. Ashutosh Kumar: Writing—review and editing. Nancy L. Kuntz: Writing—review and editing. Vamshi K. Rao: Writing—review and editing. Rachel Schrader: Writing—review and editing. Saunder M. Bernes: Writing—review and editing. Vikki Ann Stefans: Writing—review and editing. Jena M. Krueger: Writing—review and editing. Marcia V. Felker: Writing—review and editing. Omer Abdul Hamid: Writing—review and editing. Arpita Lakhotia: Writing—review and editing. Susan Matesanz: Writing—review and editing. Partha S. Ghosh: Writing—review and editing. Natalie Katz: Writing—review and editing. Hoda Abdel-Hamid: Writing—review and editing. Chamindra G. Laverty: Writing—review and editing. Bo Hoon Lee: Writing—review and editing. Amy Harper: Writing—review and editing. Leigh Ramos-Platt: Writing—review and editing. Diana Castro: Writing—review and editing. Russell J. Butterfield: Writing—original draft. Crystal M. Proud: Writing—review and editing. Craig M. Zaidman: Writing—review and editing. Emma Ciafaloni: Conceptualization; Methodology; Writing—original draft; Writing—review and editing. A. V.: consultancy/advisory role with AMO Pharma, AveXis, Biogen, Catalyst, Edgewise Therapeutics, Entrada, FibroGen, Italfarmaco, Lupin, myTomorrows, Novartis, Pfizer, PTC Therapeutics, Sarepta Therapeutics, UCB, and Scholar Rock; research funding from AMO Pharma, Capricor Therapeutics, Edgewise Therapeutics, FibroGen, Muscular Dystrophy Association, Novartis, Parent Project Muscular Dystrophy, Pfizer, RegenxBio, and Sarepta Therapeutics; other relationship(s) with MedLink Neurology for editorial services. A. M. C.: consultancy/advisory role with Biohaven, Edgewise, Sarepta Therapeutics, Inc., and Scholar Rock; research funding from Biohaven, Edgewise, FibroGen, MDA, Sarepta Therapeutics, Inc., and Scholar Rock. K. D. M.: consultancy/advisory role with Sarepta Therapeutics, ML Bio; research funding from AMO Pharma, Capricor Therapeutics, Edgewise Therapeutics, FibroGen, Avidity, Italfarmaco, Reata, Lexeo, Biogen, Biohaven, Scholar Rock, PTC Therapeutics, Pfizer, and Sarepta Therapeutics. C. M. M.: received grants or research support from Astellas Pharma, BioMarin Pharmaceutical, Capricor Therapeutics, Catabasis Pharmaceuticals, Edgewise Therapeutics, Italfarmaco, Pfizer, PTC Therapeutics, and Santhera Pharmaceuticals; and consulting fees from Sarepta Therapeutics, Astellas Pharma, Avidity Biosciences, BioMarin Pharmaceutical, Bristol Myers Squibb, Capricor Therapeutics, Catabasis Pharmaceuticals, Edgewise Therapeutics, Eli Lilly, Epirium Bio, Entrada Therapeutics, Gilead Sciences, Halo Therapeutics, Italfarmaco, Novartis, PepGen, Pfizer, PTC Therapeutics, Prosensa, and Santhera Pharmaceuticals. R. S. F.: received personal compensation for consulting and for advisory board participation from Novartis Gene Therapies, Inc., Biogen, Novartis, Roche, and Scholar Rock; editorial fees from Elsevier for co-editing a neurology textbook; license fees from the Children's Hospital of Philadelphia; and research funding from Novartis Gene Therapies, Biogen, Roche/Genentech, and Scholar Rock. V. V.: consultancy/advisory role with Sarepta Therapeutics; research support from Genentech and Biohaven. C. T.: consultant/advisory role with Pfizer, Sarepta, and Catalyst; grants/research support from MDA, National Institutes of Health, AveXis/Novartis, Biohaven, Catabasis, Capricor, Edgewise, FibroGen, Pfizer, PTC Therapeutics, Roche, Santhera, Sarepta, Summit, and Wave. S. A.: research support from Dyne, Sarepta, Capricor, FibroGen, Edgewise. J. P.: consultant/advisory role with Biogen, Novartis, Genentech, Scholar Rock, and Pfizer; research support from Novartis, Biogen, Genentech, Biohaven, Scholar Rock, and PTC Therapeutics. J. H. S.: served as consultant for Sarepta, Pfizer, WCG, and ImmunoForge. W. B. B.: PTC Therapeutics, Sarepta Therapeutics, and SteroTherapeutics. K. Y. B.: consulting/advisory role with Biogen, UCB, Reata Pharmaceuticals, Pfizer, Catalyst Pharmaceuticals, myTomorrows. S. T. I.: consulting/advisory role with Audentes Therapeutics, BioMarin Pharmaceutical, Edgewise Therapeutics, Entrada Therapeutics, Genentech, Octapharma, Taysha Gene Therapies, Vertex Pharmaceuticals; research funding from AveXis/Novartis, Biogen, Capricor, Genentech, RegenxBio, Sarepta, and Scholar Rock. C. T.: consulting/advisory role with Pfizer, Sarepta, Catalyst; grant/research support from MDA, National Institutes of Health, AveXis/Novartis, Biohaven, Catabasis, Capricor, Edgewise, FibroGen, Pfizer, PTC Therapeutics, Roche, Santhera, Sarepta, Summit, and Wave. K. M. F.: consulting fees from Sarepta Therapeutics for service on advisory boards. M. M.: consulting/advisory role with Sarepta, PTC, Biogen, AveXis/Novartis, and Catalyst. A. K.: consulting/advisory role with PTC Therapeutics, Sarepta Therapeutics, Novartis, Genentech/Roche, Biogen, Pfizer, and ITF Therapeutics; also served on PTC speaker bureau. N. L. K.: serves on medical advisory boards for Argenx, Biogen, Novartis, Roche, and Sarepta; research support from Biogen, Novartis, Roche, and Sarepta. V. K. R.: consulting/advisory role with Biogen, NS Pharma, Novartis, PTC Therapeutics, Reata, RegenxBio, Sarepta, Scholar Rock, Delsys, Genetech/Roche, Novartis, PTC Therapeutics, Syneos; speaker bureau for Biogen and Genentech/Roche; research support from NS Pharma, RegenxBio, Sarepta. O. A. H.: advisory board with Catalyst. S. M.: advisory boards for Sarepta, Novartis; data safety monitoring board for Atamyo Therapeutics. P. G.: advisory/consulting role with Sarepta, Catalyst, Pfizer, and CVS Caremark; associate editor for Annals of the Child Neurology Society. H. A. H.: received research support from and served on advisory boards for Sarepta Therapeutics, Biogen, NS Pharma, and AveXis/Novartis. C. G. L.: contracts (as principal investigator) from Sarepta Therapeutics, Dyne Therapeutics, Avidity Biosciences, FibroGen, Scholar Rock, and Biohaven; consulting fees from Sarepta Therapeutics (payments to her institution), NS Pharma (payments to herself), and Avidity (payments to her institution and to herself); payments for participation in a speakers bureau from Biogen; and support for attending meetings and/or travel from the Muscular Dystrophy Association, Cure CMD, and Cure SMA. B. H. L.: research support from Novartis, AMO Pharma, Sarepta, and Sanofi Genzyme; received personal compensation for serving on an advisory board for Roche. R. J. B.: serves on scientific advisory boards for Sarepta Therapeutics, Biogen, AveXis, and Pfizer. C. M. P.: Site principal investigator for Astellas, Biogen, Catabasis, CSL Behring, Novartis Gene Therapies, Inc., Pfizer, PTC, Sarepta, and Scholar Rock clinical trials; received honoraria for advisory board participation from Biogen, Novartis Gene Therapies, Inc., Novartis, Roche, and Sarepta; and received speaker's fees from Biogen and Novartis Gene Therapies, Inc. C. M. Z.: grants or contracts from Biogen and Novartis; consulting fees from Sarepta Therapeutics; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Sarepta Therapeutics and Optum; support for attending meetings and/or travel from Sarepta Therapeutics and Optum; and participation on a data safety monitoring board or advisory board for Sarepta Therapeutics. E. C.: received research and/or grant support from the Centers for Disease Control and Prevention, CureSMA, Muscular Dystrophy Association, National Institutes of Health, Orphazyme, the Patient-Centered Outcomes Research Institute, Parent Project Muscular Dystrophy, PTC Therapeutics, Santhera, Sarepta Therapeutics, Orphazyme, and the US Food and Drug Administration; received royalties from Oxford University Press and compensation from MedLink for editorial duties. The remaining authors declare no conflicts of interest.