HC
Hengchi Chen
Author with expertise in Evolution and Classification of Flowering Plants
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
10
h-index:
8
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
19

Seagrass genomes reveal a hexaploid ancestry facilitating adaptation to the marine environment

Xiao Ma et al.Mar 6, 2023
+36
L
J
X
ABSTRACT Seagrasses comprise the only submerged marine angiosperms, a feat of adaptation from three independent freshwater lineages within the Alismatales. These three parallel lineages offer the unique opportunity to study convergent versus lineage-specific adaptation to a fully marine lifestyle. Here, we present chromosome-level genome assemblies from a representative species of each of the seagrass lineages - Posidonia oceanica (Posidoniaceae), Cymodocea nodosa (Cymodoceaceae), and Thalassia testudinum (Hydrocharitaceae) - along with an improved assembly for Zostera marina (Zosteraceae). We also include a draft genome of Potamogeton acutifolius , a representative of Potamogetonaceae, the freshwater sister lineage to the Zosteraceae. Genome analysis reveals that all seagrasses share an ancient whole genome triplication (WGT) event, dating to the early evolution of the Alismatales. An additional whole genome duplication (WGD) event was uncovered for C. nodosa and P. acutifolius . Dating of ancient WGDs and more recent bursts of transposable elements correlate well with major geological and recent climatic events, supporting their role as rapid generators of genetic variation. Comparative analysis of selected gene families suggests that the transition from the submerged-freshwater to submerged-marine environment did not require revolutionary changes. Major gene losses related to, e.g., stomata, volatiles, defense, and lignification, are likely a consequence of the submerged lifestyle rather than the cause (‘use it or lose it’). Likewise, genes, often retained from the WGD and WGT, were co-opted for functions requiring the alignment of many small adaptations (‘tweaking’), e.g., osmoregulation, salinity, light capture, carbon acquisition, and temperature. Our ability to manage and conserve seagrass ecosystems depends on our understanding of the fundamental processes underpinning their resilience. These new genomes will accelerate functional studies and are expected to contribute to transformative solutions — as continuing worldwide losses of the ‘savannas of the sea’ are of major concern in times of climate change and loss of biodiversity.
19
Citation5
0
Save
10

Chinese fir genome and the evolution of gymnosperms

Shan-Hsiung Lin et al.Oct 26, 2022
+72
W
S
S
Abstract Seed plants comprise angiosperms and gymnosperms. The latter includes gnetophytes, cycads, Ginkgo, and conifers. Conifers are distributed worldwide, with 630 species distributed across eight families and 70 genera. Their distinctiveness has triggered much debate on their origin, evolution, and phylogenetic placement among seed plants. To better understand the evolution of gymnosperms and their relation to other seed plants, we report here a high-quality genome sequence for a tree species, Chinese fir ( Cunninghamia lanceolata ), which has excellent timber quality and high aluminum adaptability and is a member of Cupressaceae with high levels of heterozygosity. We assembled an 11.24 Gb genome with a contig N50 value of 2.15 Mb and anchored the 10.89 Gb sequence to 11 chromosomes. Phylogenomic analyses showed that cycads sister to Ginkgo, which place to sister in all gymnosperm lineages, and Gnetales within conifers sister to Pinaceae. Whole-genome duplication (WGD) analysis showed that the ancestor of seed plants has differentiated into angiosperms and gymnosperms after having experienced a WGD event. The ancestor of extant gymnosperm has experienced a gymnosperm-specific WGD event and the extant angiosperms do not share a common WGD before their most recent common ancestor diverged into existing angiosperms lineages. Analysis of the MADS-box gene family of C. lanceolata revealed the developmental mechanism of the reproductive organs in C. lanceolata , which supported the (A)B(C) model of the development of gymnosperms reproductive organs. In addition, astringent seeds and shedding of whole branches (with withered leaves) might be a strategy of C. lanceolata that evolved during long-term adaptation to an aluminum-rich environment. The findings also reveal the molecular regulation mechanism of shade tolerance in C. lanceolata seedlings. Our results improve the resolution of ancestral genomic features within seed plants and the knowledge of genome evolution and diversification of gymnosperms.
10
Citation4
0
Save
6

Revisiting Ancient Polyploidy in Leptosporangiate Ferns

Hengchi Chen et al.Mar 14, 2022
+3
Y
S
H
Abstract Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. Although, consequently, the number of sequenced fern genomes is very limited, recent studies using transcriptome data to find evidence for WGDs in ferns reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building age distributions and applying substitution rate corrections and by conducting statistical gene tree – species tree reconciliation analyses. Our integrative analyses confidently identified four ancient WGDs in the sampled core leptosporangiates and suggest both false positives and false negatives for the WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree – species tree reconciliations in calling WGD events, and that failing to do so likely leads to incorrect conclusions.
6
Citation1
0
Save
0

Comparative transcriptomics in ferns reveals key innovations and divergent evolution of secondary cell wall

Zahin Ali et al.Aug 27, 2024
+20
P
Q
Z
Abstract Despite ferns being crucial to understanding plant evolution, their large and complex genomes has kept their genetic landscape largely uncharted, with only a handful of genomes sequenced and sparse transcriptomic data. Addressing this gap, we generated extensive RNA-sequencing data for multiple organs across 22 representative species over the fern phylogeny, assembling high-quality transcriptomes. These data facilitated the construction of a time-calibrated fern phylogeny covering all major clades, revealing numerous whole-genome duplications and highlighting the uniqueness of fern genetics, with half of the uncovered gene families being fern-specific. Our investigation into fern cell walls through biochemical and immunological analyses identified occurrences of the lignin syringyl unit and its independent evolution in ferns. Moreover, the discovery of an unusual sugar in fern cell walls hints at a divergent evolutionary path in cell wall biochemistry, potentially driven by gene duplication and sub-functionalization. We provide an online database preloaded with genomic and transcriptomic data for ferns and other land plants, which we used to identify an independent evolution of lignocellulosic gene modules in ferns. Our data provide a framework for the unique evolutionary path that ferns have navigated since they split from the last common ancestor of euphyllophytes more than 360 million years ago.