MB
Melissa Burke
Author with expertise in Tuberculosis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
590
h-index:
19
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Expression Atlas: gene and protein expression across multiple studies and organisms

Irene Papatheodorou et al.Nov 6, 2017
Expression Atlas (http://www.ebi.ac.uk/gxa) is an added value database that provides information about gene and protein expression in different species and contexts, such as tissue, developmental stage, disease or cell type. The available public and controlled access data sets from different sources are curated and re-analysed using standardized, open source pipelines and made available for queries, download and visualization. As of August 2017, Expression Atlas holds data from 3,126 studies across 33 different species, including 731 from plants. Data from large-scale RNA sequencing studies including Blueprint, PCAWG, ENCODE, GTEx and HipSci can be visualized next to each other. In Expression Atlas, users can query genes or gene-sets of interest and explore their expression across or within species, tissues, developmental stages in a constitutive or differential context, representing the effects of diseases, conditions or experimental interventions. All processed data matrices are available for direct download in tab-delimited format or as R-data. In addition to the web interface, data sets can now be searched and downloaded through the Expression Atlas R package. Novel features and visualizations include the on-the-fly analysis of gene set overlaps and the option to view gene co-expression in experiments investigating constitutive gene expression across tissues or other conditions.
0
Citation371
0
Save
91

Optimizing Short-format Training: an International Consensus on Effective, Inclusive, and Career-spanning Professional Development in the Life Sciences and Beyond

Jason Williams et al.Mar 13, 2023
ABSTRACT Science, technology, engineering, mathematics, and medicine (STEMM) fields change rapidly and are increasingly interdisciplinary. Commonly, STEMM practitioners use short-format training (SFT) such as workshops and short courses for upskilling and reskilling, but unaddressed challenges limit SFT’s effectiveness and inclusiveness. Prior work, including the NSF 2026 Reinventing Scientific Talent proposal, called for addressing SFT challenges, and a diverse international group of experts in education, accessibility, and life sciences came together to do so. This paper describes the phenomenography and content analyses that produced a set of 14 actionable recommendations to systematically strengthen SFT. Recommendations were derived from findings in the educational sciences and the experiences of several of the largest life science SFT programs. Recommendations cover the breadth of SFT contexts and stakeholder groups and include actions for instructors (e.g., make equity and inclusion an ethical obligation), programs (e.g., centralize infrastructure for assessment and evaluation), as well as organizations and funders (e.g., professionalize training SFT instructors; deploy SFT to counter inequity). Recommendations are aligned into a purpose-built framework— “The Bicycle Principles”—that prioritizes evidenced-based teaching, inclusiveness, and equity, as well as the ability to scale, share, and sustain SFT. We also describe how the Bicycle Principles and recommendations are consistent with educational change theories and can overcome systemic barriers to delivering consistently effective, inclusive, and career-spanning SFT. SIGNIFICANCE STATEMENT STEMM practitioners need sustained and customized professional development to keep up with innovations. Short-format training (SFT) such as workshops and short-courses are relied upon widely but have unaddressed limitations. This project generated principles and recommendations to make SFT consistently effective, inclusive, and career-spanning. Optimizing SFT could broaden participation in STEMM by preparing practitioners more equitably with transformative skills. Better SFT would also serve members of the STEMM workforce who have several decades of productivity ahead, but who may not benefit from education reforms that predominantly focus on undergraduate STEMM. The Bicycle Principles and accompanying recommendations apply to any SFT instruction and may be especially useful in rapidly evolving and multidisciplinary fields such as artificial intelligence, genomics, and precision medicine.