PW
Philip Wigge
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(74% Open Access)
Cited by:
6,794
h-index:
35
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The dynamic genome of Hydra

Jarrod Chapman et al.Mar 1, 2010
Hydra, first described by Anton van Leeuwenhoek in a letter to the Royal Society in 1702, has been studied by biologists for centuries and now is an important model for work on axial patterning, stem cell biology and regeneration. Its genome, over half of which is made up of mobile elements, has now been sequenced, as has the genome of a Curvibacter sp. bacterium stably associated with Hydra magnipapillata. Comparisons of the Hydra genome with those of other animals provide insights into the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, pluripotency genes and the neuromuscular junction, as well as the Spemann–Mangold organizer, the region in the early embryo that establishes the embryo's axis. The freshwater cnidarian Hydra is a significant model for studies of axial patterning, stem cell biology and regeneration. Its (A+T)-rich genome has now been sequenced. Comparison of this genome with those of other animals provides insights into the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, pluripotency genes and more. The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction.
0
Citation759
0
Save
0

FT Protein Acts as a Long-Range Signal in Arabidopsis

Katja Jaeger et al.Jun 1, 2007
Plants are sessile organisms and must respond to changes in environmental conditions. Flowering time is a key developmental switch that is affected by both day length and temperature. Environmental cues are sensed by the leaves while the responses occur at the apex, requiring long-range communication within the plant. For many years it has been known that leaves exposed to light can trigger the floral transition of a darkened shoot, and grafting experiments demonstrated that the floral stimulus travels long distances. This mobile signal was later termed "florigen," but its nature has been unclear. The gene FLOWERING LOCUS T (FT) is a major output of both the photoperiod and the vernalization pathways controlling the floral transition. FT protein acts at the shoot apex of the plant in concert with a transcription factor, FLOWERING LOCUS D (FD). A fundamental question is how FT transcription in the leaves leads to active FT protein at the apex. We have uncoupled FT protein movement from its biological function to show that FT protein is the mobile signal that travels from the leaves to the apex. To our knowledge, FT is the only known protein that serves as a long-range developmental signal in plants.
0
Citation691
0
Save
0

PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature

Keara Franklin et al.Nov 28, 2011
At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), is also required for hypocotyl elongation in response to high temperature. PIF4 also acts redundantly with its homolog, PIF5, to regulate diurnal growth rhythms and elongation responses to the threat of vegetative shade. PIF4 activity is reportedly limited in part by binding to both the basic helix-loop-helix protein LONG HYPOCOTYL IN FAR RED 1 and the DELLA family of growth-repressing proteins. Despite the importance of PIF4 in integrating multiple environmental signals, the mechanisms by which PIF4 controls growth are unknown. Here we demonstrate that PIF4 regulates levels of auxin and the expression of key auxin biosynthesis genes at high temperature. We also identify a family of SMALL AUXIN UP RNA ( SAU R ) genes that are expressed at high temperature in a PIF4 -dependent manner and promote elongation growth. Taken together, our results demonstrate direct molecular links among PIF4, auxin, and elongation growth at high temperature.
0

A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis

Jae‐Hoon Jung et al.Aug 26, 2020
Temperature controls plant growth and development, and climate change has already altered the phenology of wild plants and crops1. However, the mechanisms by which plants sense temperature are not well understood. The evening complex is a major signalling hub and a core component of the plant circadian clock2,3. The evening complex acts as a temperature-responsive transcriptional repressor, providing rhythmicity and temperature responsiveness to growth through unknown mechanisms2,4-6. The evening complex consists of EARLY FLOWERING 3 (ELF3)4,7, a large scaffold protein and key component of temperature sensing; ELF4, a small α-helical protein; and LUX ARRYTHMO (LUX), a DNA-binding protein required to recruit the evening complex to transcriptional targets. ELF3 contains a polyglutamine (polyQ) repeat8-10, embedded within a predicted prion domain (PrD). Here we find that the length of the polyQ repeat correlates with thermal responsiveness. We show that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness. The temperature sensitivity of ELF3 is also modulated by the levels of ELF4, indicating that ELF4 can stabilize the function of ELF3. In both Arabidopsis and a heterologous system, ELF3 fused with green fluorescent protein forms speckles within minutes in response to higher temperatures, in a PrD-dependent manner. A purified fragment encompassing the ELF3 PrD reversibly forms liquid droplets in response to increasing temperatures in vitro, indicating that these properties reflect a direct biophysical response conferred by the PrD. The ability of temperature to rapidly shift ELF3 between active and inactive states via phase transition represents a previously unknown thermosensory mechanism.
0
Citation401
0
Save
Load More