DR
David Rabuka
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
0
h-index:
2
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
12

Discovery and engineering of AiEvo2, a novel Cas12a nuclease for human gene editing applications

Allison Sharrar et al.Aug 28, 2023
Abstract The precision of gene editing technology is critical to creating safe and effective therapies for treating human disease. While the programmability of CRISPR-Cas systems has allowed for rapid innovation of new gene editing techniques, the off-target activity of these enzymes has hampered clinical development for novel therapeutics. Here we report the identification and characterization of a novel CRISPR-Cas12a enzyme from Acinetobacter indicus (AiCas12a). We then engineer the nuclease (termed AiEvo2) for increased specificity, PAM recognition, and efficacy on a variety of human clinical targets. AiEvo2 is highly precise and able to efficiently discriminate between normal and disease-causing alleles in Huntington’s patient derived cells by taking advantage of a single nucleotide polymorphism on the disease-associated allele. AiEvo2 efficiently edits several liver-associated target genes including PCSK9 and TTR when delivered to primary hepatocytes as mRNA encapsulated in a lipid nanoparticle. The enzyme also engineers an effective CD19 CAR-T therapy from primary human T cells using multiplexed simultaneous editing and CAR insertion. To further ensure precise editing, we engineered an anti-CRISPR protein (ErAcr) to selectively inhibit off-target gene editing while retaining therapeutic on-target editing. The engineered AiEvo2 nuclease coupled with a novel ErAcr protein represents a new way to control the fidelity of editing and improve the safety and efficacy of gene editing therapies.
0

Viral delivery of compact CRISPR-Cas12f forin vivogene editing applications

Allison Sharrar et al.Feb 9, 2024
Abstract Treating human genetic conditions in vivo requires efficient delivery of the CRISPR gene editing machinery to the affected cells and organs. The gene editing field has seen clinical advances with ex vivo therapies and with in vivo delivery to the liver using lipid nanoparticle technology. Adeno-associated virus (AAV) serotypes have been discovered and engineered to deliver genetic material to nearly every organ in the body. However, the large size of most CRISPR-Cas systems limits packaging into the viral genome and reduce drug development flexibility and manufacturing efficiency. Here, we demonstrate efficient CRISPR gene editing using a miniature CRISPR-Cas12f system with expanded genome targeting packaged into AAV particles. We identified efficient guides for four therapeutic gene targets and encoded the guides and the Cas12f nuclease into a single AAV. We then demonstrate editing in multiple cell lines, patient fibroblasts, and primary hepatocytes. We then screened the cells for off-target editing, demonstrating the safety of the therapeutics. These results represent an important step in applying in vivo CRISPR editing to diverse genetic sequences and organs in the body.