KB
Kasun Buddika
Author with expertise in Invertebrate Immunity and Host Defense Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
7
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Coordinate transcriptional and post-transcriptional repression of pro-differentiation genes maintains intestinal stem cell identity

Kasun Buddika et al.Jun 28, 2020
Summary The role of Processing bodies (P-bodies), key sites of post-transcriptional control, in adult stem cells remains poorly understood. Here, we report that adult Drosophila intestinal stem cells, but not surrounding differentiated cells such as absorptive Enterocytes (ECs), harbor P-bodies that contain Drosophila orthologs of mammalian P-body components DDX6, EDC3, EDC4 and LSM14A/B. A targeted RNAi screen in intestinal progenitor cells identified 39 previously known and 64 novel P-body regulators, including Patr-1 , a gene necessary for P-body assembly. Loss of Patr-1 -dependent P-bodies leads to a loss of stem cells that is associated with inappropriate translation and expression of EC-fate gene nubbin . Transcriptomic analysis of progenitor cells identifies a cadre of such weakly transcribed pro-differentiation transcripts that are elevated after P-body loss. Altogether, this study identifies a coordinated P-body dependent, translational and transcriptional repression program that maintains a defined set of in vivo stem cells in a state primed for differentiation. Graphical abstract Highlights Drosophila intestinal progenitor cells contain constitutive and ultrastructurally organized P-bodies. A P-body regulator Patr-1 is required for intestinal progenitor cell maintenance. Enterocyte (EC) genes such as nubbin are weakly transcribed but not translated in intestinal progenitors. P-bodies repress EC gene translation to promote stem cell maintenance.
7
Citation4
0
Save
8

I-KCKT allows dissection-free RNA profiling of adultDrosophilaintestinal progenitor cells

Kasun Buddika et al.Jun 27, 2020
Abstract The adult Drosophila intestinal epithelium is a model system for stem cell biology, but its utility is limited by current biochemical methods that lack cell type resolution. Here, we describe a new proximity-based profiling method that relies upon a GAL4 driver, termed intestinal-kickout-GAL4 ( I-KCKT-GAL4 ), exclusively expressed in intestinal progenitor cells. This method used UV cross-linked whole animal frozen powder as its starting material to immunoprecipitate the RNA cargoes of transgenic epitope-tagged RNA binding proteins driven by I-KCKT-GAL4 . When applied to the general mRNA-binder, poly(A)-binding protein, the RNA profile obtained by this method identified 98.8% of transcripts found after progenitor cell sorting, and had low background noise despite being derived from whole animal lysate. We also mapped the targets of the more selective RNA binder, Fragile Mental Retardation Protein, using enhanced CLIP, and report for the first time its binding motif in Drosophila cells. This method will therefore enable the RNA profiling of wildtype and mutant intestinal progenitor cells from intact flies exposed to normal and altered environments, as well as the identification of RNA-protein interactions critical for stem cell function. Summary Statement We report a dissection-free method to identify proximity-based RNA-protein interactions in an in vivo stem cell population, enabling molecular analysis of these cells at unprecedented speed and resolution.
8
Citation3
0
Save
22

NULISA: a novel proteomic liquid biopsy platform with attomolar sensitivity and high multiplexing

Wei Feng et al.Apr 10, 2023
Abstract The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range across the proteome. We report a novel proteomic technology – NUcleic acid Linked Immuno-Sandwich Assay (NULISA™) – that incorporates a dual capture and release mechanism to suppress the assay background and improves the sensitivity of the proximity ligation assay by over 10,000-fold to the attomolar level. It utilizes pairs of antibodies conjugated to DNA oligonucleotides that enable immunocomplex purification and generate reporter DNA containing target- and sample-specific barcodes for a next-generation sequencing-based, highly multiplexed readout. A 200-plex NULISA targeting 124 cytokines and chemokines and 80 other immune response-related proteins demonstrated superior sensitivity for detecting low-abundance proteins and high concordance with other immunoassays. The ultrahigh sensitivity allowed the detection of previously difficult-to-detect, but biologically important, low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA addresses longstanding challenges in proteomic analysis of liquid biopsies and makes broad and in-depth proteomic analysis accessible to the general research community and future diagnostic applications.
0

Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster

Nader Mahmoudzadeh et al.May 19, 2024
ABSTRACT The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh. Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system (Malpighian tubules; MTs) is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation. Overall, our findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.
1

The RNA binding protein Swm is critical for Drosophila melanogaster intestinal progenitor cell maintenance

Ishara Ariyapala et al.Jan 4, 2022
ABSTRACT The regulation of stem cell survival, self-renewal, and differentiation is critical for the maintenance of tissue homeostasis. Although the involvement of signaling pathways and transcriptional control mechanisms in stem cell regulation have been extensively investigated, the role of post-transcriptional control is still poorly understood. Here we show that the nuclear activity of the RNA-binding protein Second Mitotic Wave Missing (Swm) is critical for Drosophila intestinal stem cells (ISCs) and their daughter cells, enteroblasts (EBs), to maintain their identity and function. Loss of swm in these intestinal progenitor cells leads ISCs and EBs to lose defined cell identities, fail to proliferate, and detach from the basement membrane, resulting in severe progenitor cell loss. swm loss further causes nuclear accumulation of poly(A)+ RNA in progenitor cells. Swm associates with transcripts involved in epithelial cell maintenance and adhesion, and the loss of swm , while not generally affecting the levels of these Swm-bound mRNAs, leads to elevated expression of proteins encoded by some of them, including the fly orthologs of Filamin and Talin. Taken together, this study indicates a role for Swm in adult stem cell maintenance, and raises the possibility that nuclear post-transcriptional gene regulation plays vital roles in controlling adult stem cell maintenance and function.
0

Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster

Nader Mahmoudzadeh et al.Aug 1, 2024
The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh. Our studies revealed that while L2hgdh is not essential for growth or viability under standard culture conditions, L2hgdh mutants are hypersensitive to hypoxia and expire during the reoxygenation phase with severe disruptions of mitochondrial metabolism. Moreover, we find that the fly renal system (Malpighian tubules; MTs) is a key site of L2hgdh activity, as L2hgdh mutants that express a rescuing transgene within the MTs survive hypoxia treatment and exhibit normal levels of mitochondrial metabolites. We also demonstrate that even under normoxic conditions, L2hgdh mutant MTs experience significant metabolic stress and are sensitized to aberrant growth upon Egfr activation. Overall, our findings present a model in which renal L2hgdh activity limits systemic L-2HG accumulation, thus indirectly regulating the balance between glycolytic and mitochondrial metabolism, enabling successful recovery from hypoxia exposure, and ensuring renal tissue integrity.
0

Lactate and glycerol-3-phosphate metabolism cooperatively regulate growth and redox balance during Drosophila melanogaster larval development

Hongde Li et al.Jan 10, 2019
The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (dLDH) activity. The resulting metabolic program is ideally suited to synthesize macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila dLDH in promoting biosynthesis, we examined how dLdh mutations influence larval development. Our studies unexpectantly found that dLdh mutants grow at a normal rate, indicating that dLDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that dLdh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both dLDH and G3P dehydrogenase (GPDH1) exhibit developmental delays, synthetic lethality, and aberrant carbohydrate metabolism. Considering that human cells also generate G3P upon Lactate Dehydrogenase A (LDHA) inhibition, our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness upon growing animal tissues.