JS
John Scholler
Author with expertise in Chimeric Antigen Receptor T Cell Therapy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(90% Open Access)
Cited by:
7,487
h-index:
36
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells

Omkar Kawalekar et al.Feb 1, 2016
+11
J
R
O
Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8+ central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies.
0
Citation931
0
Save
0

Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells

John Scholler et al.May 2, 2012
+13
G
T
J
Adoptively transferred chimeric antigen receptor T cells have stable stem cell–like persistence for at least a decade and more than 500 years of patient safety.
0
Citation599
0
Save
0

Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity without Severe Toxicity

Liang‐Chuan Wang et al.Nov 13, 2013
+11
J
A
L
The majority of chimeric antigen receptor (CAR) T-cell research has focused on attacking cancer cells. Here, we show that targeting the tumor-promoting, nontransformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single-chain Fv FAP [monoclonal antibody (mAb) 73.3] with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFN-γ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAP(hi) stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8(+) T-cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T-cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective, suggesting that further clinical development of anti-human FAP-CAR is warranted.
0
Citation507
0
Save
0

Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma

Avery Posey et al.Jun 1, 2016
+19
A
R
A
Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.
0
Citation504
0
Save
0

Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell

Marco Ruella et al.Sep 27, 2018
+23
D
J
M
We report a patient relapsing 9 months after CD19-targeted CAR T cell (CTL019) infusion with CD19– leukemia that aberrantly expressed the anti-CD19 CAR. The CAR gene was unintentionally introduced into a single leukemic B cell during T cell manufacturing, and its product bound in cis to the CD19 epitope on the surface of leukemic cells, masking it from recognition by and conferring resistance to CTL019. A CAR gene unintentionally introduced in a contaminating leukemia cell during the manufacturing of CAR T cells caused a patient to relapse after therapy.
0
Citation497
0
Save
0

Targeting cardiac fibrosis with engineered T cells

Haig Aghajanian et al.Sep 11, 2019
+22
J
T
H
Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts—fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease. Adoptive transfer of CAR T cells against the fibroblast marker FAP reduces cardiac fibrosis and restores function after cardiac injury in mice, providing proof-of-principle for the development of immunotherapeutic treatments for cardiac disease.
0
Citation496
0
Save
0

Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies

Marco Ruella et al.Aug 28, 2016
+18
S
D
M
Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies
0
Citation489
0
Save
0

Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation

Sònia Guedan et al.Jan 10, 2018
+14
J
R
S
Successful tumor eradication by chimeric antigen receptor–expressing (CAR-expressing) T lymphocytes depends on CAR T cell persistence and effector function. We hypothesized that CD4+ and CD8+ T cells may exhibit distinct persistence and effector phenotypes, depending on the identity of specific intracellular signaling domains (ICDs) used to generate the CAR. First, we demonstrate that the ICOS ICD dramatically enhanced the in vivo persistence of CAR-expressing CD4+ T cells that, in turn, increased the persistence of CD8+ T cells expressing either CD28- or 4-1BB–based CARs. These data indicate that persistence of CD8+ T cells was highly dependent on a helper effect provided by the ICD used to redirect CD4+ T cells. Second, we discovered that combining ICOS and 4-1BB ICDs in a third-generation CAR displayed superior antitumor effects and increased persistence in vivo. Interestingly, we found that the membrane-proximal ICD displayed a dominant effect over the distal domain in third-generation CARs. The optimal antitumor and persistence benefits observed in third-generation ICOSBBz CAR T cells required the ICOS ICD to be positioned proximal to the cell membrane and linked to the ICOS transmembrane domain. Thus, CARs with ICOS and 4-1BB ICD demonstrate increased efficacy in solid tumor models over our current 4-1BB–based CAR and are promising therapeutics for clinical testing.
0
Citation446
0
Save
0

Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells

Saar Gill et al.Mar 5, 2014
+9
M
S
S
Key Points Targeting of CD123 via CAR-engineered T cells results in rejection of human AML and myeloablation in mouse models.
0
Citation422
0
Save
0

Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells

Albert Lo et al.May 16, 2015
+13
J
L
A
Abstract Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASC) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas. Clinically, FAP expression serves as an independent negative prognostic factor for multiple types of human malignancies. Prior studies established that depletion of FAP+ cells inhibits tumor growth by augmenting antitumor immunity. However, the potential for immune-independent effects on tumor growth have not been defined. Herein, we demonstrate that FAP+ CASCs are required for maintenance of the provisional tumor stroma because depletion of these cells, by adoptive transfer of FAP-targeted chimeric antigen receptor (CAR) T cells, reduced extracellular matrix proteins and glycosaminoglycans. Adoptive transfer of FAP-CAR T cells also decreased tumor vascular density and restrained growth of desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers in an immune-independent fashion. Adoptive transfer of FAP-CAR T cells also restrained autochthonous pancreatic cancer growth. These data distinguish the function of FAP+ CASCs from other CASC subsets and provide support for further development of FAP+ stromal cell-targeted therapies for the treatment of solid tumors. Cancer Res; 75(14); 2800–10. ©2015 AACR.
0
Citation418
0
Save
Load More