FB
Fernando Bustos
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
3
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Myosin Va Brain-Specific Mutation Alters Mouse Behavior and Disrupts Hippocampal Synapses

Swarna Pandian et al.Jul 10, 2020
ABSTRACT Myosin Va (MyoVa) is a plus-end filamentous-actin motor protein that is highly and broadly expressed in the vertebrate body, including in the nervous system. In excitatory neurons MyoVa transports cargo toward the tip of the dendritic spine, where the post-synaptic density (PSD) is formed and maintained. MyoVa mutations in humans cause neurological dysfunction, mental retardation, hypomelanation and death in infancy or childhood. Here we characterize the Flailer (Flr) mutant mouse, which is homozygous for a myo5a mutation that drives high levels of mutant MyoVa (Flr protein) specifically in the CNS. Flr protein functions as a dominant-negative MyoVa, sequestering cargo and blocking its transport to the PSD. Flr mice have early seizures and mild ataxia, but mature and breed normally. Flr mice display several abnormal behaviors known to be associated with brain regions that show high expression of Flr protein. Flr mice are defective in the transport of synaptic components to the PSD and in mGluR-dependent LTD and have a reduced number of mature dendritic spines. The synaptic and behavioral abnormalities of Flr mice result in an anxiety/autism spectrum disorder (ASD)/obsessive compulsive-like phenotype similar to that of other mouse mutants with similar abnormalities. Because of the dominant-negative nature of the Flr protein, the Flr mouse offers a powerful system for the analysis of how the disruption of synaptic transport and lack of LTD can alter synaptic function, development and wiring of the brain and result in symptoms that characterize many neuropsychiatric disorders. SIGNIFICANCE STATEMENT Here we characterize a mutant mouse homozygous for a Myosin Va mutation named Flailer. The Flailer mutation generates a dominant-negative MyoVa transport motor protein that sequesters synaptic cargo and blocks synaptic transport, thereby resulting in an absence of LTD and in abnormal behaviors similar to those seen anxiety/Autism Spectrum disorders. We propose that the Flailer mutant can be used as a model to study how the absence of LTD disrupts brain connectivity and behavior. Moreover, by using the Flailer mutation together with gene editing technologies it should be possible to target specific brain areas to remove the mutation and recover MyoVa function, thereby interrogating the role of a specific brain region in the control of a particular behavior.
6
Citation1
0
Save
0

Deletion of VPS50 protein in mouse brain impairs synaptic function and behavior

Constanza Ahumada-Marchant et al.Jun 26, 2024
Abstract Background The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans . Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. Results To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. Conclusions We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.
0
Citation1
0
Save
2

Removal of a genomic duplication by double-nicking CRISPR restores synaptic transmission and behavior in the MyosinVA mutant mouse Flailer

Fernando Bustos et al.Apr 28, 2023
Abstract Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. Using the ASD and anxiety mouse model Flailer, that contains a duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700bp genomic duplication in vitro and in vivo . Importantly, DN-CRISPRs have not been used to remove more gene regions <100bp successfully and with high efficiency. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene edition. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescues some of the mutant behaviors, while intracerebroventricular delivery, completely recovers Flailer animal phenotype associated to anxiety and ASD. Our results demonstrate the potential of DN-CRISPR to efficiently (>60% editing in vivo) remove large genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.
0

RSPO/LGR signaling mediates astrocyte-induced proliferation of adult hippocampal neural stem cells

Daniela Valenzuela-Bezanilla et al.Dec 19, 2023
In the dentate gyrus of the adult hippocampus, neurogenesis from neural stem cells (NSCs) is regulated by Wnt signals from the local microenvironment. The Wnt/β-catenin pathway is active in NSCs, where it regulates proliferation and fate commitment, and subsequently its activity is strongly attenuated. The mechanisms controlling this pattern of activity are poorly understood. In stem cells from adult peripheral tissues, secreted R-spondin proteins (RSPO1-4) interact with LGR4-6 receptors and control Wnt signaling strength. Here, we found that RSPO1-3 and LGR4-6 are expressed in the adult dentate gyrus and in cultured NSCs isolated from the adult mouse hippocampus. The expression of LGR4-5 decreased in NSCs upon differentiation, concomitantly with the reported decrease in Wnt activity. Treatment with RSPO1-3 increased hippocampal NSCs proliferation and the expression of the Wnt target gene Cyclin D1. Moreover, RSPO1-3 were expressed by primary cultures of dentate gyrus astrocytes, a crucial component of the neurogenic niche able to induce NSC proliferation and neurogenesis. In co-culture experiments, astrocyte-induced proliferation of NSCs was prevented by RSPO2 knockdown in astrocytes, and by LGR5 knockdown in hippocampal NSCs. Altogether, our results indicate that RSPO/LGR signaling is present in the dentate niche, where it could control Wnt activity and proliferation of NSCs.