Abstract In animals, somatic cells are usually diploid and are unstable when haploid for unknown reasons. In this study, by comparing isogenic human cell lines with different ploidies, we found frequent centrosome loss specifically in the haploid state, which profoundly contributed to haploid instability through monopolar spindle formation and subsequent mitotic defects. We also found that efficiency of centriole licensing and duplication, but not that of DNA replication, changes proportionally to ploidy level, causing gradual loss or frequent overduplication of centrioles in haploid and tetraploid cells, respectively. Centriole licensing efficiency seemed to be modulated by astral microtubules, whose development scaled with ploidy level, and artificial enhancement of aster formation in haploid cells restored centriole licensing efficiency to diploid levels. Haploid-specific centrosome loss was also observed in parthenogenetic mouse embryos. We propose that incompatibility between the centrosome duplication and DNA replication cycles arising from different scaling properties of these bioprocesses upon ploidy changes, underlies the instability of non-diploid somatic cells in mammals. Summary Yaguchi et al. show that a delay or acceleration of centriole licensing compromises the control of centrosome number in haploid or tetraploid human cells, respectively, suggesting a cellular basis of the instability of non-diploid somatic cells in mammals.