KM
Kavi Mehta
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hierarchical determinants of the oxidation-induced mutational landscape in human cells

Cameron Cordero et al.Apr 11, 2024
Abstract 8-oxoguanine (8-oxoG) is a common oxidative DNA lesion, which causes G>T substitutions that compose COSMIC single base substitution signature 18 (SBS18) in human cancers. Determinants of local and regional differences in 8-oxoG-induced mutability are currently unknown. To uncover factors influencing the topology of 8-oxoG-induced mutations, we assessed spontaneous and KBrO 3 -induced 8-oxoG mutagenesis in human cell lines. KBrO 3 exposure produced a SBS18-like substitution spectrum and a distinct never-before reported INDEL signature that we also observed in human cancers. KBrO 3 -induced 8-oxoG lesions occurred with similar sequence preference as KBrO 3 -induced substitutions, indicating that the reactivity of specific reactive oxygen species (ROS) dictates the trinucleotide motif specificity for 8-oxoG-induced mutagenesis. While 8-oxoG lesions occurred relatively uniformly across chromatin states and nucleosomes, 8-oxoG-induced mutations occurred more frequently in more compact regions of the genome, within nucleosomal DNA, and at inward facing guanines within strongly positioned nucleosomes. Cryo-EM structures of OGG1 bound to nucleosomes indicate that these effects originate from OGG1’s ability to flip outward positioned 8-oxoG lesions into the catalytic pocket with only minor alterations to nucleosome structure, while inward facing lesions occluded by the histone octamer are unrecognized. Mutation spectra from cells with DNA repair deficiencies revealed a hierarchical DNA repair network limiting 8-oxoG mutagenesis in human cells, where OGG1– and MUTY-mediated BER is supplemented by replication-associated factors participating in tolerance of 8-oxoG or derived repair intermediates (i.e. Pol η and HMCES). Surprisingly, analysis of transcriptional asymmetry of KBrO 3 -induced mutations demonstrated transcription-coupled repair of 8-oxoG in Pol η-deficient cells. Thus, radical chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.
0

Obesity Induces DNA Damage in Mammary Epithelial Cells Exacerbated by Acrylamide Treatment through CYP2E1-Mediated Oxidative Stress

Brenna Walton et al.Jul 2, 2024
Obesity and environmental toxins are risk factors for breast cancer; however, there is limited knowledge on how these risk factors interact to promote breast cancer. Acrylamide, a probable carcinogen and obesogen, is a by-product in foods prevalent in the obesity-inducing Western diet. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to the genotoxic epoxide, glycidamide, and is associated with an increased risk for breast cancer. To investigate how acrylamide and obesity interact to increase breast cancer risk, female mice were fed a low-fat (LFD) or high-fat diet (HFD) and control water or water supplemented with acrylamide at levels similar to the average daily exposure in humans. While HFD significantly enhanced weight gain in mice, the addition of acrylamide did not significantly alter body weights compared to respective controls. Mammary epithelial cells from obese, acrylamide-treated mice had increased DNA strand breaks and oxidative DNA damage compared to all other groups. In vitro, glycidamide-treated COMMA-D cells showed significantly increased DNA strand breaks, while acrylamide-treated cells demonstrated significantly higher levels of intracellular reactive oxygen species. The knockdown of CYP2E1 rescued the acrylamide-induced oxidative stress. These studies suggest that long-term acrylamide exposure through foods common in the Western diet may enhance DNA damage and the CYP2E1-induced generation of oxidative stress in mammary epithelial cells, potentially enhancing obesity-induced breast cancer risk.