PN
Praful Nair
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
741
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Engineering self-propelled tumor-infiltrating CAR T cells using synthetic velocity receptors

Adrian Johnston et al.Dec 14, 2023
ABSTRACT Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to “lock-in” a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines’ cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.
5
3.0
Citation1
3
Save
0

A 3D in vitro assay to study combined immune cell infiltration and cytotoxicity

Ashleigh Crawford et al.Mar 28, 2024
Abstract Immune cell-mediated killing of cancer cells in a solid tumor is prefaced by a multi-step infiltration cascade of invasion, directed migration, and cytotoxic activities. In particular, immune cells must invade and migrate through a series of different extracellular matrix (ECM) boundaries and domains before reaching and killing their target tumor cells. These infiltration events are a central challenge to the clinical success of CAR T cells against solid tumors. The current standard in vitro cell killing assays measure cell cytotoxicity in an obstacle-free, two-dimensional (2D) microenvironment, which precludes the study of 3D immune cell-ECM interactions. Here, we present a 3D combined infiltration/cytotoxicity assay based on an oil-in-water microtechnology. This assay measures stromal invasion following extravasation, migration through the stromal matrix, and invasion of the solid tumor in addition to cell killing. We compare this 3D cytotoxicity assay to the benchmark 2D assay through tumor assembloid cocultures with immune cells and engineered immune cells. This assay is amenable to an array of imaging techniques, which allows direct observation and quantification of each stage of infiltration in different immune and oncological contexts. We establish the 3D infiltration/cytotoxicity assay as an important tool for the mechanistic study of immune cell interactions with the tumor microenvironment. Graphical Abstract The 3D combined infiltration/cytotoxicity assay captures three important steps of immune cell infiltration into the solid tumor microenvironment: (1) circulating immune cells extravasate and invade the stromal matrix, (2) immune cells migrate through the stromal matrix to reach the tumor core, and (3) immune cells that successfully navigate the stroma must cross a basement membrane boundary secreted by the cancer cells to contact and kill the cancer cells within a solid tumor.
0
Citation1
0
Save
0

Substrate stiffness modulates the emergence and magnitude of senescence phenotypes

Bartholomew Starich et al.Feb 7, 2024
Cellular senescence is a major driver of aging and disease. Here we show that substrate stiffness modulates the emergence and magnitude of senescence phenotypes after exposure to senescence inducers. Using a primary dermal fibroblast model, we show that decreased substrate stiffness accelerates senescence-associated cell-cycle arrest and regulates the expression of conventional protein-based biomarkers of senescence. We found that the expression of these senescence biomarkers, namely p21WAF1/CIP1 and p16INK4a are mechanosensitive and are in-part regulated by myosin contractility through focal adhesion kinase (FAK)-ROCK signaling. Interestingly, at the protein level senescence-induced dermal fibroblasts on soft substrates (0.5 kPa) do not express p21WAF1/CIP1 and p16INK4a at comparable levels to induced cells on stiff substrates (4GPa). However, cells express CDKN1a, CDKN2a, and IL6 at the RNA level across both stiff and soft substrates. Moreover, when cells are transferred from soft to stiff substrates, senescent cells recover an elevated expression of p21WAF1/CIP1 and p16INK4a at levels comparable to senescence cells on stiff substrates, pointing to a mechanosensitive regulation of the senescence phenotype. Together, our results indicate that the emergent senescence phenotype depends critically on the local mechanical environments of cells and that senescent cells actively respond to changing mechanical cues.
0
Citation1
0
Save
1

MLL1 regulates cytokine-driven cell migration and metastasis

Praful Nair et al.Oct 19, 2022
Abstract Cell migration is a critical requirement for cancer metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells in the tumor microenvironment. MLL1 is a histone methyltransferase that controls 3D cell migration via the secretion of cytokines, IL-6 and TGF-β1, by the cancer cells themselves. In vivo , MLL1 depletion reduced metastatic burden and prolonged survival. MLL1 exerts its effects with its scaffold protein, Menin. Mechanistically, the MLL1-Menin interaction controls actin filament assembly via the IL-6/pSTAT3/Arp3 axis and acto-myosin contractility via the TGF-β1/Gli2/ROCK1/2/pMLC2 axis, which regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Combining an MLL1-Menin inhibitor with Paclitaxel, a standard chemotherapeutic, abrogated tumor growth and metastasis in a syngeneic model. These results highlight the potential of targeting the MLL1 in metastasis prevention and its potential to be combined with currently administered chemotherapeutics. Statement of Significance We identify MLL1 as being vital to metastasis, which causes the vast majority of cancer-related deaths. MLL1 controls cell migration, a requirement for metastasis, by regulating the secretion of cytokines. MLL1 inhibition lowers metastatic burden independent of its impact on primary tumor growth, highlighting its anti-metastatic potential in TNBC.
1
Citation1
0
Save
0

High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment

Wenxuan Du et al.Jul 18, 2024
Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.