EG
E. Gollub
Author with expertise in Adaptations of Tardigrades to Extreme Environments
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
2
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Disordered proteins interact with the chemical environment to tune their protective function during drying

Shraddha Kc et al.Mar 2, 2024
+8
V
K
S
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.
0
Citation1
0
Save
1

Helicity of a tardigrade disordered protein promotes desiccation tolerance

Sourav Biswas et al.Jul 6, 2023
+4
F
E
S
Abstract In order to survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here we demonstrate that the linker region of CAHS D, a desiccation-related IDP from tardigrades that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, sequence scrambling, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, the resulting helicity of these variants generated through similar helix breaking modalities correlates strongly with their ability to promote desiccation tolerance, providing direct evidence that helical structure is necessary for robust protection conferred by this desiccation-related IDP. However, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities do not show as strong a trend, suggesting that while helicity is important it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
1
Citation1
0
Save
14

Labile assembly of a tardigrade protein induces biostasis

Sergio Sanchez-Martinez et al.Jul 2, 2023
+21
S
K
S
Abstract Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins that form gels. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of gelation for CAHS D similar to that of intermediate filaments. We show that gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo , we observe that CAHS D forms fiber-like condensates during osmotic stress. Condensation of CAHS D improves survival of osmotically shocked cells through at least two mechanisms: reduction of cell volume change and reduction of metabolic activity. Importantly, condensation of CAHS D is reversible and metabolic rates return to control levels after CAHS condensates are resolved. This work provides insights into how tardigrades induce biostasis through the self-assembly of CAHS gels.
0

Protein surface chemistry encodes an adaptive resistance to desiccation

Paulette Romero-Pérez et al.Jul 29, 2024
+12
A
H
P
Cellular desiccation - the loss of nearly all water from the cell - is a recurring stress in an increasing number of ecosystems that can drive proteome-wide protein unfolding and aggregation. For cells to survive this stress, at least some of the proteome must disaggregate and resume function upon rehydration. The molecular determinants that underlie the ability of proteins to do this remain largely unknown. Here, we apply quantitative and structural proteomic mass spectrometry to desiccated and rehydrated yeast extracts to show that some proteins possess an innate capacity to survive extreme water loss. Structural analysis correlates the ability of proteins to resist desiccation with their surface chemistry. Remarkably, highly resistant proteins are responsible for the production of the cell's building blocks - amino acids, metabolites, and sugars. Conversely, those proteins that are most desiccation-sensitive are involved in ribosome biogenesis and other energy consuming processes. As a result, the rehydrated proteome is preferentially enriched with metabolite and small molecule producers and depleted of some of the cell's heaviest consumers. We propose this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration.
0

LEA_4 motifs function alone and in conjunction with synergistic cosolutes to protect a labile enzyme during desiccation

Vincent Nicholson et al.Sep 4, 2024
+5
E
K
V
Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by eleven-residue motifs, plays a crucial role in the desiccation tolerance of numerous species. However, the role of these motifs in the function of LEA_4 proteins is unclear, with some studies finding that they recapitulate the function of full-length LEA_4 proteins in vivo, and other studies finding the opposite result. In this study, we characterize the ability of LEA_4 motifs to protect a desiccation-sensitive enzyme, citrate synthase, from loss of function during desiccation. We show here that LEA_4 motifs not only prevent the loss of function of citrate synthase during desiccation, but also that they can do so more robustly via synergistically interactions with cosolutes. Our analysis further suggests that cosolutes induce synergy with LEA_4 motifs in a manner that correlates with transfer free energy (TFE). This research advances our understanding of LEA_4 proteins by demonstrating that during desiccation their motifs can protect specific clients to varying degrees and that their protective capacity is modulated by their chemical environment. Our findings extend beyond the realm of desiccation tolerance, offering insights into the interplay between IDPs and cosolutes. By investigating the function of LEA_4 motifs, we highlight broader strategies for understanding protein stability and function.