PL
Purificación López‐García
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(81% Open Access)
Cited by:
920
h-index:
67
/
i10-index:
179
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
182

A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution

Xavier Grau‐Bové et al.Dec 1, 2021
+11
C
C
X
Abstract Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically-comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in Archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (e.g., methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites.
182
Citation5
0
Save
1

A concept for international societally relevant microbiology education and microbiology knowledge promulgation in society

Kenneth Timmis et al.May 1, 2024
+78
T
J
K
Executive summary Microbes are all pervasive in their distribution and influence on the functioning and well‐being of humans, life in general and the planet. Microbially‐based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy , Green Deal , etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision‐makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative–the IMiLI–is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence‐based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner‐centric, not academic microbiology‐centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators–learners. As such, they will collect and analyse feedback from the end‐users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators–learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships–a global societally relevant microbiology education ecosystem–in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. Abstract The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well‐being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us–individuals/communities/nations/the human world–and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. Here, we present our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision‐making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner‐centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091–1111). Importantly, although the primary target of the freely available (CC BY‐NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity‐driven, web‐based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.
1
Paper
Citation5
0
Save
0

Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area

Jodie Belilla et al.Jun 3, 2019
+7
L
D
J
Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S rRNA-gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area (Ethiopia). We identify two physicochemical barriers to life in the presence of surface liquid water defined by: i) high chaotropicity-low water activity in Mg 2+ /Ca 2+ -dominated brines and ii) hyperacidity-salt combinations (pH~0/ NaCl-dominated salt-saturation) When detected, life was dominated by highly diverse ultrasmall archaea widely distributed across phyla with and without previously known halophilic members. We hypothesize that high cytoplasmic K + -level was an original archaeal adaptation to hyperthermophily, subsequently exapted during multiple transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.
0
Paper
Citation5
0
Save
158

Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota

Luis Galindo et al.Nov 20, 2020
+2
P
S
L
Abstract Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living flagellated stages (zoospores) remain poorly known and their phylogenetic position is often unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and Sanchytrium tribonematis , showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchytrids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages.
158
Citation4
0
Save
0

Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines

Ana Gutiérrez-Preciado et al.Mar 10, 2024
+3
B
B
A
Few described archaeal, and fewer bacterial, lineages thrive at salt-saturating conditions, such as solar saltern crystallizers (salinity above 30%-w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance ("salt-in" strategy), and have proteins adaptively enriched in negatively charged, acidic amino acids. Here, we analyzed metagenomes and metagenome-assembled genomes (MAGs) from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression. Normalized abundances of universal single-copy genes confirmed that haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the near life-limiting conditions of the Western-Canyon Lakes (WCLs). Danakil metagenome- and MAG-inferred proteomes, compared to those of freshwater, seawater and solar saltern ponds up to saturation (6-14-32% salinity), showed that WCL archaea encode the most acidic proteomes ever observed (median protein isoelectric points ≤4.4). We identified previously undescribed Halobacteria families as well as an Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme halophily. Despite phylum-level diversity decreasing with increasing salinity-chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in Danakil ecosystems, challenging the notion of decreasing diversity under extreme conditions. Metabolic flexibility to utilize multiple energy and carbon resources generated by local hydrothermalism along feast-and-famine strategies seemingly shape microbial diversity in these ecosystems near life limits.
0
Citation1
0
Save
1

Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life

Guifré Torruella et al.May 15, 2024
P
D
L
G
Eukaryotes radiated from their last common ancestor, diversifying into several supergroups with unresolved deep evolutionary connections. Heterotrophic flagellates, often branching deeply in phylogenetic trees, are arguably the most diverse eukaryotes. However, many of them remain undersampled and/or incertae sedis. Here, we conducted comprehensive phylogenomics analyses with an expanded taxon sampling of early-branching protists including 22 newly sequenced transcriptomes (apusomonads, ancyromonads, Meteora). They support the monophyly of Opimoda, one of the largest eukaryotic supergroups, with CRuMs being sister to the Amorphea (amoebozoans, breviates, apusomonads, and opisthokonts -including animals and fungi-), and the ancyromonads+malawimonads clade. By mapping traits onto this phylogenetic framework, we infer a biflagellate opimodan ancestor with an excavate-like feeding groove. Breviates and apusomonads retained the ancestral biflagellate state. Other Amorphea lost one or both flagella, enabling the evolution of amoeboid shapes, novel feeding modes, and palintomic cell division resulting in multinucleated cells, which likely facilitated the subsequent evolution of fungal and metazoan multicellularity.
1
Paper
Citation1
0
Save
65

Metagenome-derived virus-microbe ratios across ecosystems

Purificación López‐García et al.Feb 17, 2021
+8
M
A
P
Abstract It is generally assumed that viruses outnumber cells on Earth by at least tenfold. Virus-to-microbe ratios (VMR) are largely based on counts of fluorescently labelled virus-like particles. However, these exclude intracellular viruses and potentially include false positives (DNA-containing vesicles, gene-transfer agents, unspecifically stained inert particles). Here, we develop a metagenome-based VMR estimate (mVRM) that accounts for DNA viruses across all stages of their replication cycles (virion, intracellular lytic and lysogenic) by using normalised RPKM (reads per kilobase of gene sequence per million of mapped metagenome reads) counts of the major capsid protein (MCP) genes and cellular universal single-copy genes (USCGs) as proxies for virus and cell counts, respectively. After benchmarking this strategy using mock metagenomes with increasing VMR, we inferred mVMR across different biomes. To properly estimate mVMR in aquatic ecosystems, we generated metagenomes from co-occurring cellular and viral fractions (>50 kDa-200 µm size-range) in freshwater, seawater and solar saltern ponds (10 metagenomes, 2 control metaviromes). Viruses outnumbered cells in freshwater by ∼13 fold and in plankton from marine and saline waters by ∼2-4 fold. However, across an additional set of 121 diverse non-aquatic metagenomes including microbial mats, microbialites, soils, freshwater and marine sediments and metazoan-associated microbiomes, viruses, on average, outnumbered cells by barely two-fold. Although viruses likely are the most diverse biological entities on Earth, their global numbers might be closer to those of cells than previously estimated.
65
Citation1
0
Save
0

Culture- and genome-based characterization of a tripartite interaction between patescibacterial epibionts, methylotrophic proteobacteria, and a jumbo phage in freshwater ecosystems

Feriel Buderka et al.Mar 9, 2024
+8
P
P
F
Patescibacteria form a very diverse and widely distributed phylum of small bacteria inferred to have an episymbiotic lifestyle. However, the prevalence of this lifestyle within the phylum and their host specificity remain poorly known due to the scarcity of cultured representatives. Here, we describe a tripartite interaction of a patescibacterium, its gammaproteobacterial host, and a patescibacterial phage based on metagenomic data and enrichment cultures from two shallow, geographically close, freshwater ecosystems. The patescibacterium, Strigamonas methylophilicida sp. nov., defines a new genus within the family Absconditicoccaceae. It grows as epibiont on cells of methanotrophic species of the gammaproteobacterial family Methylophilaceae. Strigamonas cells are tightly attached to the host, sometimes forming stacks that connect two host cells. Despite a surprisingly large genome (1.9 Mb) compared to many other patescibacteria, S. methylophilicida lacks many essential biosynthetic pathways, including the complete biosynthesis of phospholipids, amino acids, and nucleic acids, implying a dependence on the host to obtain these molecules. From metagenomes of these ecosystems, we identified and assembled the genome of a jumbo phage likely infecting the patescibacterium based on a CRISPR spacer match. Its large genome (230 kb) contained a wide gene repertoire, including genes probably involved in the modification of the Strigamonas metabolism and cell surface. By manipulating the patescibacterial phenotype during infection, the phage likely influences in turn the interaction of the patescibacterial epibiont with its methylotrophic host in a parasitic menage-a-trois. Our results confirm a prevalent episymbiotic lifestyle in Absconditicoccaceae and further suggest a clade-specific adaptation of these patescibacteria for gammaproteobacterial hosts.
0
Citation1
0
Save
27

Description ofGloeomargarita ahousahtiaesp. nov., a thermophilic member of the order Gloeomargaritales with intracellular carbonate inclusions

Thomas Bacchetta et al.Nov 4, 2022
+8
P
M
T
ABSTRACT A unicellular cyanobacterium, strain VI4D9, was isolated from thermophilic microbial mats thriving in a hot spring of the Ahousaht territory of Vancouver Island, Canada. The cells were elongated rods (5.1 μm in length and 1.2 μm in width on average). Their UV-visible absorption spectra revealed that they contain chlorophyll a , phycocyanin, and carotenoids. Transmission electron microscopy showed the presence of thylakoids concentrated on one side of the cells. The strain grew within a temperature range of 37–50°C, with an optimum at 45°C. Its genome had a size of 3,049,282 bp and a DNA G+C content of 51.8 mol%. The cells contained numerous intracellular spherical granules easily visible under scanning electron microscopy. Energy-dispersive x-ray spectroscopy revealed that these granules were made of Ca-, Ba- and Sr-containing carbonates. A phylogenetic 16S rRNA gene tree robustly placed this strain as sister to several environmental sequences and the described species Gloeomargarita lithophora , also characterized by the possession of intracellular carbonate inclusions. We consider strain VI4D9 to represent a new Gloeomargarita species based on its marked phenotypic differences with G. lithophora , notably, its thermophilic nature and different thylakoid organization. We propose the name Gloeomargarita ahousahtiae sp. nov. for this newly isolated thermophilic cyanobacterium. The type strain is VI4D9 (Culture Collection of Algae and Protozoa strain 1472/1; Laboratorio de Algas Continentales Mexico strain LAC 140). G. ahousahtiae is the second species described within the recently discovered order Gloeomargaritales.
27
0
Save
Load More