Mice with cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TG AC8 ) are under a constant state of severe myocardial stress and have been shown to have a remarkable ability to adapt to this stress. However, they eventually develop accelerated cardiac aging and cardiac fibrosis, and experience reduced longevity. Here we show that young (3-month-old) TG AC8 animals are characterized by a broad and extensive inflammatory state, that precedes the development of cardiac fibrosis. We demonstrate that activation of ACVIII in the cardiomyocytes results in cell-autonomous RelA-mediated NF-κB signaling. This is associated with non-cell-autonomous activation of proinflammatory and age-associated signaling in myocardial endothelial cells, increases in serum levels of inflammatory cytokines, changes in myocardial immune cells, and changes in the size or composition of lymphoid organs. Finally, we provide evidence suggesting that ACVIII-driven RelA activation in cardiomyocytes might be mediated by calcium-Protein Kinase A (PKA) signaling. Our findings highlight a novel mechanistic connection between cardiomyocyte stress, myocardial para-inflammation, systemic inflammation, and aging, and therefore point to novel potential therapeutic targets to reduce age-associated myocardial deterioration.