SL
Sergey Lyskov
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
1,611
h-index:
19
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta

Sidhartha Chaudhury et al.Jan 7, 2010
J
S
S
Abstract Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. Availability: PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site. Contact: pyrosetta@graylab.jhu.edu
0

The RosettaDock server for local protein-protein docking

Sergey Lyskov et al.Apr 29, 2008
J
S
The RosettaDock server ( http://rosettadock.graylab.jhu.edu ) identifies low-energy conformations of a protein–protein interaction near a given starting configuration by optimizing rigid-body orientation and side-chain conformations. The server requires two protein structures as inputs and a starting location for the search. RosettaDock generates 1000 independent structures, and the server returns pictures, coordinate files and detailed scoring information for the 10 top-scoring models. A plot of the total energy of each of the 1000 models created shows the presence or absence of an energetic binding funnel. RosettaDock has been validated on the docking benchmark set and through the Critical Assessment of PRedicted Interactions blind prediction challenge.
0
Citation544
0
Save
0

Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE)

Sergey Lyskov et al.May 22, 2013
+14
S
F
S
The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code's difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step 'serverification' protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org.
4

Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks

Julia Leman et al.Apr 5, 2021
+45
F
R
J
Abstract Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.
4
Citation3
0
Save
1

Reliable protein-protein docking with AlphaFold, Rosetta, and replica-exchange

Ameya Harmalkar et al.Jul 29, 2023
J
S
A
Despite the recent breakthrough of AlphaFold (AF) in the field of protein sequence-to-structure prediction, modeling protein interfaces and predicting protein complex structures remains challenging, especially when there is a significant conformational change in one or both binding partners. Prior studies have demonstrated that AF-multimer (AFm) can predict accurate protein complexes in only up to 43% of cases.1 In this work, we combine AlphaFold as a structural template generator with a physics-based replica exchange docking algorithm. Using a curated collection of 254 available protein targets with both unbound and bound structures, we first demonstrate that AlphaFold confidence measures (pLDDT) can be repurposed for estimating protein flexibility and docking accuracy for multimers. We incorporate these metrics within our ReplicaDock 2.0 protocol2 to complete a robust in-silico pipeline for accurate protein complex structure prediction. AlphaRED (AlphaFold-initiated Replica Exchange Docking) successfully docks failed AF predictions including 97 failure cases in Docking Benchmark Set 5.5. AlphaRED generates CAPRI acceptable-quality or better predictions for 66% of benchmark targets. Further, on a subset of antigen-antibody targets, which is challenging for AFm (19% success rate), AlphaRED demonstrates a success rate of 51%. This new strategy demonstrates the success possible by integrating deep-learning based architectures trained on evolutionary information with physics-based enhanced sampling. The pipeline is available at github.com/Graylab/AlphaRED.
0

Modeling and docking antibody structures with Rosetta

Brian Weitzner et al.Aug 16, 2016
+5
S
J
B
We describe Rosetta-based computational protocols for predicting the three-dimensional structure of an antibody from sequence and then docking the antibody--protein-antigen complexes. Antibody modeling leverages canonical loop conformations to graft large segments from experimentally-determined structures as well as (1) energetic calculations to minimize loops, (2) docking methodology to refine the VL--VH relative orientation, and (3) de novo prediction of the elusive complementarity determining region (CDR) H3 loop. To alleviate model uncertainty, antibody--antigen docking resamples CDR loop conformations and can use multiple models to represent an ensemble of conformations for the antibody, the antigen or both. These protocols can be run fully-automated via the ROSIE web server or manually on a computer with user control of individual steps. For best results, the protocol requires roughly 2,500 CPU-hours for antibody modeling and 250 CPU-hours for antibody--antigen docking. Tasks can be completed in under a day by using public supercomputers.
0

Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP

Julia Leman et al.Nov 10, 2016
R
S
J
Background: Membrane proteins are vastly underrepresented in structural databases, which has led to a lack of computational tools and the corresponding inappropriate use of tools designed for soluble proteins. For membrane proteins, lipid accessibility is an essential property. Even though programs are available for sequence-based prediction of lipid accessibility and structure-based identification of solvent-accessible surface area, the latter does not distinguish between water accessible and lipid accessible residues in membrane proteins. Results: Here we present mp_lipid_acc, the first method to identify lipid accessible residues from the protein structure, implemented in the RosettaMP framework and available as a webserver. Our method uses protein structures transformed in membrane coordinates, for instance from PDBTM or OPM databases, and a defined membrane thickness to classify lipid accessibility of residues. mp_lipid_acc is applicable to both -helical and -barrel membrane proteins of diverse architectures with or without water-filled pores and uses a concave hull algorithm for classification. We further provide a manually curated benchmark dataset, on which our method achieves prediction accuracies of 90%. Conclusion: We present a novel tool to classify lipid accessibility from the protein structure, which is applicable to proteins of diverse architectures and achieves prediction accuracies of 90% on a manually curated database. mp_lipid_acc is part of the Rosetta software suite, available at www.rosettacommons.org. The webserver is available at http://rosie.graylab.jhu.edu/mp_lipid_acc/submit and the benchmark dataset is available at http://tinyurl.com/mp-lipid-acc-dataset.