ST
StJohn Townsend
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
535
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components.

Cathy Savage‐Dunn et al.Jan 23, 1996
Although transforming growth factor beta (TGF-beta) superfamily ligands play critical roles in diverse developmental processes, how cells transduce signals from these ligands is still poorly understood. Cell surface receptors for these ligands have been identified, but their cytoplasmic targets are unknown. We have identified three Caenorhabditis elegans genes, sma-2, sma-3, and sma-4, that have mutant phenotypes similar to those of the TGF-beta-like receptor gene daf-4, indicating that they are required for daf-4-mediated developmental processes. We show that sma-2 functions in the same cells as daf-4, consistent with a role in transducing signals from the receptor. These three genes define a protein family, the dwarfins, that includes the Mad gene product, which participates in the decapentaplegic TGF-beta-like pathway in Drosophila [Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. (1995) Genetics 139, 1347-1358]. The identification of homologous components of these pathways in distantly related organisms suggests that dwarfins may be universally required for TGF-beta-like signal transduction. In fact, we have isolated highly conserved dwarfins from vertebrates, indicating that these components are not idiosyncratic to invertebrates. These analyses suggest that dwarfins are conserved cytoplasmic signal transducers.
0
Citation527
0
Save
1

An adaptable, reusable, and light implant for chronic Neuropixels probes

Célian Bimbard et al.Aug 6, 2023
Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) be light enough for use in mice; (3) allow reuse of the probes after explantation. Here, we present the "Apollo Implant", an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a "payload" module that is attached to the probe and is recoverable, and a "docking" module that is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across seven labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.
1

Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan

Clara Correia‐Melo et al.Mar 7, 2022
Abstract Metabolism is fundamentally intertwined with the ageing process. We here report that a key determinant of cellular lifespan is not only nutrient supply and intracellular metabolism, but also metabolite exchange interactions that occur between cells. Studying chronological ageing in yeast, we observed that metabolites exported by young, exponentially growing, cells are re- imported during the stationary phase when cells age chronologically, indicating the existence of cross-generational metabolic interactions. We then used self-establishing metabolically cooperating communities (SeMeCos) to boost cell-cell metabolic interactions and observed a significant lifespan extension. A search for the underlying mechanisms, coupling SeMeCos, metabolic profiling, proteomics and genome-scale metabolic modelling, attributed a specific role to methionine consumer cells. These cells were enriched over time, adopted glycolytic metabolism and increased export of protective metabolites. Glycerol, in particular, accumulated in the communal metabolic environment and extended the lifespan of all cells in the community in a paracrine fashion. Our results hence establish metabolite exchange interactions as a determinant of the ageing process and show that metabolically cooperating cells shape their metabolic environment to achieve lifespan extension.
1
Citation2
0
Save
1

Functional profiling of long intergenic non-coding RNAs in fission yeast

María Rodríguez-López et al.Jul 1, 2021
Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it is not clear in general to what extent lincRNAs contribute to the information flow from genotype to phenotype. To explore this question, we systematically analyzed cellular roles of lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-gene mutants for functional context. We applied high-throughput colony-based assays to determine mutant growth and viability in benign conditions and in response to 145 different nutrient, drug and stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy and flow-cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants tested. For complementary functional inference, we analyzed colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analyzed exert cellular functions in specific environmental or physiological contexts. This study provides groundwork to further dissect the roles of these lincRNAs in the relevant conditions.
1
Citation2
0
Save
0

Barcode Sequencing and a High-throughput Assay for Chronological Lifespan Uncover Ageing-associated Genes in Fission Yeast

Catalina Romila et al.Mar 4, 2021
ABSTRACT Ageing-related processes are largely conserved, with simple organisms remaining the main platform to discover and dissect new ageing-associated genes. Yeasts provide potent model systems to study cellular ageing owing their amenability to systematic functional assays under controlled conditions. Even with yeast cells, however, ageing assays can be laborious and resource-intensive. Here we present improved experimental and computational methods to study chronological lifespan in Schizosaccharomyces pombe . We decoded the barcodes for 3206 mutants of the latest gene-deletion library, enabling the parallel profiling of ∼700 additional mutants compared to previous screens. We then applied a refined method of barcode sequencing (Bar-seq), addressing technical and statistical issues raised by persisting DNA in dead cells and sampling bottlenecks in aged cultures, to screen for mutants showing altered lifespan during stationary phase. This screen identified 341 long-lived mutants and 1246 short-lived mutants which point to many previously unknown ageing-associated genes, including 51 conserved but entirely uncharacterized genes. The ageing-associated genes showed coherent enrichments in processes also associated with human ageing, particularly with respect to ageing in non-proliferative brain cells. We also developed an automated colony-forming unit assay for chronological lifespan to facilitate medium- to high-throughput ageing studies by saving time and resources compared to the traditional assay. Results from the Bar-seq screen showed good agreement with this new assay, validating 33 genes not previously associated with cellular ageing. This study provides an effective methodological platform and identifies many new ageing-associated genes as a framework for analysing cellular ageing in yeast and beyond.
0
Citation1
0
Save
7

C. eleganshermaphrodites undergo semelparous reproductive death

Carina Kern et al.Nov 16, 2020
Abstract Ageing in the nematode Caenorhabditis elegans is unusual in terms of the severity and early onset of senescent pathology, particularly affecting organs involved in reproduction (Ezcurra et al., 2018; Garigan et al., 2002; Herndon et al., 2002). In post-reproductive C. elegans hermaphrodites, intestinal biomass is converted into yolk leading to intestinal atrophy and yolk steatosis (Ezcurra et al., 2018; Sornda et al., 2019). We recently showed that post-reproductive mothers vent yolk which functions as a milk ( yolk milk ), supporting larval growth that is consumed by larvae (Kern et al., 2020). This form of massive reproductive effort involving biomass repurposing leading to organ degeneration is characteristic of semelparous organisms (i.e. that exhibit only a single reproductive episode) ranging from monocarpic plants to Pacific salmon where it leads to rapid death (reproductive death) (Finch, 1990; Gems et al., 2020). Removal of the germline greatly increases lifespan in both C. elegans and Pacific salmon, in the latter case by suppressing semelparous reproductive death (Hsin and Kenyon, 1999; Robertson, 1961). Here we present evidence that reproductive death occurs in C. elegans , and that it is suppressed by germline removal, leading to extension of lifespan. Comparing three Caenorhabditis sibling species pairs with hermaphrodites and females, we show that lactation and massive early pathology only occurs in the former. In each case, hermaphrodites are shorter lived and only in hermaphrodites does germline removal markedly increase lifespan. Semelparous reproductive death has previously been viewed as distinct from ageing; however, drawing on recent theories of ageing (Blagosklonny, 2006; de Magalhães and Church, 2005; Maklakov and Chapman, 2019), we argue that it involves exaggerated versions of programmatic mechanisms that to a smaller extent contribute to ageing in non-semelparous species. Thus, despite the presence of reproductive death, mechanisms of ageing in C. elegans are informative about ageing in general.
193

C. elegansprovide milk for their young

Carina Kern et al.Nov 15, 2020
Abstract Adult C. elegans hermaphrodites exhibit severe senescent pathology that begins to develop within days of reaching sexual maturity (Ezcurra et al., 2018; Garigan et al., 2002; Herndon et al., 2002; Wang et al., 2018). For example, after depletion of self-sperm, intestinal biomass is converted into yolk leading to intestinal atrophy and yolk steatosis (pseudocoelomic lipoprotein pools, PLPs) (Ezcurra et al., 2018; Garigan et al., 2002; Herndon et al., 2002; Sornda et al., 2019). These senescent pathologies are promoted by insulin/IGF-1 signalling (IIS), which also shortens lifespan (Ezcurra et al., 2018; Kenyon, 2010). This pattern of rapid and severe pathology in organs linked to reproduction is reminiscent of semelparous organisms where massive reproductive effort leads to rapid death (reproductive death) as in Pacific salmon (Finch, 1990; Gems et al., 2020). Moreover, destructive conversion of somatic biomass to support reproduction is a hallmark of reproductive death (Gems et al., 2020). Yet arguing against the occurrence of reproductive death in C. elegans is the apparent futility of post-reproductive yolk production. Here we show that this effort is not futile, since post-reproductive mothers vent yolk through their vulva, which is consumed by progeny and supports their growth; thus vented yolk functions as a milk, and C. elegans mothers exhibit a form of lactation. Moreover, IIS promotes lactation, thereby effecting a costly process of resource transfer from postreproductive mothers to offspring. These results support the view that C. elegans hermaphrodites exhibit reproductive death involving a self-destructive process of lactation that is promoted by IIS. They also provide new insight into how the strongly life-shortening effects of IIS in C. elegans evolved.
193
0
Save
0

A natural variant of the sole pyruvate kinase of fission yeast lowers glycolytic flux triggering increased respiration and oxidative-stress resistance but decreased growth

Stephan Kamrad et al.Sep 16, 2019
Cells balance glycolysis with respiration to support their energetic and biosynthetic needs in different environmental or physiological contexts. With abundant glucose, many cells prefer to grow by aerobic glycolysis, or fermentation in yeast. Using 161 natural isolates of fission yeast, we investigated the genetic basis and phenotypic effects of the fermentation-respiration balance. The laboratory and a few other strains were more dependent on respiration. This trait was associated with a missense variant in a highly conserved region of Pyk1. Pyk1 is the single pyruvate kinase in fission yeast, while most organisms possess isoforms with different activity. This variant reduced Pyk1 activity and glycolytic flux. Replacing the low-activity pyk1 allele in the laboratory strain with the common high-activity allele was sufficient to increase fermentation and decrease respiration. This metabolic reprogramming triggered systems-level adaptations in the transcriptome and proteome, and in cellular phenotypes, including increased growth and chronological lifespan, but decreased resistance to oxidative stress. Thus, low Pyk1 activity provided no growth advantage but stress tolerance, despite increased respiration. The genetic tuning of glycolytic flux by a single-nucleotide change might reflect an adaptive trade-off in a species lacking pyruvate-kinase isoforms.