ZD
Zafiris Daskalakis
Author with expertise in Effects of Brain Stimulation on Motor Cortex
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(60% Open Access)
Cited by:
3,188
h-index:
94
/
i10-index:
381
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial

Daniel Blumberger et al.Apr 1, 2018
+8
K
F
D

Summary

Background

 Treatment-resistant major depressive disorder is common; repetitive transcranial magnetic stimulation (rTMS) by use of high-frequency (10 Hz) left-side dorsolateral prefrontal cortex stimulation is an evidence-based treatment for this disorder. Intermittent theta burst stimulation (iTBS) is a newer form of rTMS that can be delivered in 3 min, versus 37·5 min for a standard 10 Hz treatment session. We aimed to establish the clinical effectiveness, safety, and tolerability of iTBS compared with standard 10 Hz rTMS in adults with treatment-resistant depression. 

Methods

 In this randomised, multicentre, non-inferiority clinical trial, we recruited patients who were referred to specialty neurostimulation centres based at three Canadian university hospitals (Centre for Addiction and Mental Health and Toronto Western Hospital, Toronto, ON, and University of British Columbia Hospital, Vancouver, BC). Participants were aged 18–65 years, were diagnosed with a current treatment-resistant major depressive episode or could not tolerate at least two antidepressants in the current episode, were receiving stable antidepressant medication doses for at least 4 weeks before baseline, and had an HRSD-17 score of at least 18. Participants were randomly allocated (1:1) to treatment groups (10 Hz rTMS or iTBS) by use of a random permuted block method, with stratification by site and number of adequate trials in which the antidepressants were unsuccessful. Treatment was delivered open-label but investigators and outcome assessors were masked to treatment groups. Participants were treated with 10 Hz rTMS or iTBS to the left dorsolateral prefrontal cortex, administered on 5 days a week for 4–6 weeks. The primary outcome measure was change in 17-item Hamilton Rating Scale for Depression (HRSD-17) score, with a non-inferiority margin of 2·25 points. For the primary outcome measure, we did a per-protocol analysis of all participants who were randomly allocated to groups and who attained the primary completion point of 4 weeks. This trial is registered with ClinicalTrials.gov, number NCT01887782. 

Findings

 Between Sept 3, 2013, and Oct 3, 2016, we randomly allocated 205 participants to receive 10 Hz rTMS and 209 participants to receive iTBS. 192 (94%) participants in the 10 Hz rTMS group and 193 (92%) in the iTBS group were assessed for the primary outcome after 4–6 weeks of treatment. HRSD-17 scores improved from 23·5 (SD 4·4) to 13·4 (7·8) in the 10 Hz rTMS group and from 23·6 (4·3) to 13·4 (7·9) in the iTBS group (adjusted difference 0·103, lower 95% CI −1·16; p=0·0011), which indicated non-inferiority of iTBS. Self-rated intensity of pain associated with treatment was greater in the iTBS group than in the 10 Hz rTMS group (mean score on verbal analogue scale 3·8 [SD 2·0] vs 3·4 [2·0] out of 10; p=0·011). Dropout rates did not differ between groups (10 Hz rTMS: 13 [6%] of 205 participants; iTBS: 16 [8%] of 209 participants); p=0·6004). The most common treatment-related adverse event was headache in both groups (10 Hz rTMS: 131 [64%] of 204; iTBS: 136 [65%] of 208). 

Interpretation

 In patients with treatment-resistant depression, iTBS was non-inferior to 10 Hz rTMS for the treatment of depression. Both treatments had low numbers of dropouts and similar side-effects, safety, and tolerability profiles. By use of iTBS, the number of patients treated per day with current rTMS devices can be increased several times without compromising clinical effectiveness. 

Funding

 Canadian Institutes of Health Research.
0

Transcranial Magnetic Stimulation in the Treatment of Depression

Paul Fitzgerald et al.Oct 1, 2003
+3
Z
N
P
High-frequency left-sided repetitive transcranial magnetic stimulation (HFL-TMS) has been shown to have antidepressant effects in double-blind trials. Low-frequency stimulation to the right prefrontal cortex (LFR-TMS) has also shown promise, although it has not been assessed in treatment-resistant depression and its effects have not been compared with those of HFL-TMS.To prospectively evaluate the efficacy of HFL-TMS and LFR-TMS in treatment-resistant depression and compared with a sham-treated control group.A double-blind, randomized, sham-controlled trial.Two general psychiatric services.Sixty patients with treatment-resistant depression who had failed to respond to therapy with multiple antidepressant medications were divided into 3 groups of 20 that did not differ in age, sex, or any clinical variables. All patients completed the double-blind phase of the study.Twenty 5-second HFL-TMS trains at 10 Hz and five 60-second LFR-TMS trains at 1 Hz were applied daily. Sham stimulation was applied with the coil angled at 45 degrees from the scalp, resting on the side of one wing of the coil. Main Outcome Measure Score on the Montgomery-Asberg Depression Rating Scale.There was a significant difference in response among the 3 groups (F56,2 = 6.2), with a significant difference between the HFL-TMS and sham groups and between the LFR-TMS and sham groups (P<.005 for all) but not between the 2 treatment groups. Baseline psychomotor agitation predicted successful response to treatment.Both HFL-TMS and LFR-TMS have treatment efficacy in patients with medication-resistant major depression. Treatment for at least 4 weeks is necessary for clinically meaningful benefits to be achieved. Treatment with LFR-TMS may prove to be an appropriate initial repetitive TMS strategy in depression taking into account safety, tolerability, and efficacy considerations.
0

The mechanisms of interhemispheric inhibition in the human motor cortex

Zafiris Daskalakis et al.Aug 1, 2002
+2
P
B
Z
Transcranial magnetic stimulation can be used to non‐invasively study inhibitory processes in the human motor cortex. Interhemispheric inhibition can be measured by applying a conditioning stimulus to the motor cortex resulting in inhibition of the contralateral motor cortex. Transcranial magnetic stimulation can also be used to demonstrate ipsilateral cortico‐cortical inhibition in the motor cortex. At least two different ipsilateral cortico‐cortical inhibitory processes have been identified: short interval intracortical inhibition and long interval intracortical inhibition. However, the relationship between interhemispheric inhibition and ipsilateral cortico‐cortical inhibition remains unclear. This study examined the relationship between interhemispheric inhibition, short interval intracortical inhibition and long interval intracortical inhibition. First, the effect of test stimulus intensity on each inhibitory process was studied. Second, the effects of interhemispheric inhibition on short interval intracortical inhibition and long interval intracortical inhibition on interhemispheric inhibition were examined. Motor evoked potentials were recorded from the right first dorsal interosseous muscle in 11 right‐handed healthy volunteers. For interhemispheric inhibition, conditioning stimuli were applied to the right motor cortex and test stimuli to the left motor cortex. For short interval intracortical inhibition and long interval intracortical inhibition, both conditioning stimuli and test stimuli were applied to the left motor cortex. With increasing test stimulus intensities, long interval intracortical inhibition and interhemispheric inhibition decreased, while short interval intracortical inhibition increased. Moreover, short interval intracortical inhibition was significantly reduced in the presence of interhemispheric inhibition. Interhemispheric inhibition was significantly reduced in the presence of long interval intracortical inhibition when matched for test motor evoked potential amplitude but the difference was not significant when matched for test pulse intensity. These findings suggest that both interhemispheric inhibition and long interval intracortical inhibition are predominately mediated by low threshold cortical neurons and may share common inhibitory mechanisms. In contrast, the mechanisms mediating short interval intracortical inhibition are probably different from those mediating long interval intracortical inhibition and interhemispheric inhibition although these systems appear to interact.
0

Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex

Sophie Andrews et al.Jul 12, 2010
+2
P
K
S
Background Transcranial direct current stimulation (tDCS), applied to the left dorsolateral prefrontal cortex (DLPFC) has been found to improve working memory (WM) performance in both healthy and clinical participants. However, whether this effect can be enhanced by cognitive activity undertaken during tDCS has not yet been explored. Objective This study aimed to explore whether tDCS applied to the left DLPFC during the persistent performance of one WM task would improve performance on a subsequent WM task, to a greater extent than either tDCS or cognitive activity alone. Methods Ten healthy participants took part in three counterbalanced conditions. The conditions involved 10 minutes of either anodal tDCS while completing an n-back task, anodal tDCS while at rest, or sham tDCS while completing an n-back task. The n-back that was used in this study was a computer-based letter WM task that involved 5 minutes of two-back, followed by 5 minutes of three-back. Digit span forward and backward was administered immediately before and after each treatment, and performance change (pre- to posttreatment) calculated and compared across conditions. The digit span tasks involved a series of numbers being read to the participant, and the participant was required to repeat them back, either in the same order (Digits forward) or in the reverse order (Digits backward). Results tDCS applied during completion of the n-back task was found to result in greater improvement in performance on digit span forward, compared with tDCS applied while at rest and sham tDCS during the n-back task. This finding was not evident with digit span backward. Conclusions These results indicate that there may be potential for the use of adjunctive cognitive remediation techniques to enhance the effects of tDCS. However, further research needs to be undertaken in this area to replicate and extend this finding. Transcranial direct current stimulation (tDCS), applied to the left dorsolateral prefrontal cortex (DLPFC) has been found to improve working memory (WM) performance in both healthy and clinical participants. However, whether this effect can be enhanced by cognitive activity undertaken during tDCS has not yet been explored. This study aimed to explore whether tDCS applied to the left DLPFC during the persistent performance of one WM task would improve performance on a subsequent WM task, to a greater extent than either tDCS or cognitive activity alone. Ten healthy participants took part in three counterbalanced conditions. The conditions involved 10 minutes of either anodal tDCS while completing an n-back task, anodal tDCS while at rest, or sham tDCS while completing an n-back task. The n-back that was used in this study was a computer-based letter WM task that involved 5 minutes of two-back, followed by 5 minutes of three-back. Digit span forward and backward was administered immediately before and after each treatment, and performance change (pre- to posttreatment) calculated and compared across conditions. The digit span tasks involved a series of numbers being read to the participant, and the participant was required to repeat them back, either in the same order (Digits forward) or in the reverse order (Digits backward). tDCS applied during completion of the n-back task was found to result in greater improvement in performance on digit span forward, compared with tDCS applied while at rest and sham tDCS during the n-back task. This finding was not evident with digit span backward. These results indicate that there may be potential for the use of adjunctive cognitive remediation techniques to enhance the effects of tDCS. However, further research needs to be undertaken in this area to replicate and extend this finding.
0

A Randomized Trial of rTMS Targeted with MRI Based Neuro-Navigation in Treatment-Resistant Depression

Paul Fitzgerald et al.Jan 14, 2009
+7
S
K
P
The aim of this study is to investigate whether repetitive transcranial magnetic stimulation (rTMS) targeted to a specific site in the dorsolateral prefrontal cortex (DLPFC), with a neuro-navigational method based on structural MRI, would be more effective than rTMS applied using the standard localization technique. Fifty-one patients with treatment-resistant depression were randomized to receive a 3-week course (with a potential 1-week extension) of high-frequency (10 Hz) left-sided rTMS. Thirty trains (5 s duration) were applied daily 5 days per week at 100% of the resting motor threshold. Treatment was targeted with either the standard 5 cm technique (n=27) or using a neuro-navigational approach (n=24). This involved localizing the scalp location that corresponds to a specific site at the junction of Brodmann areas 46 and 9 in the DLPFC based on each individual subject's MRI scan. There was an overall significant reduction in the Montgomery–Asberg Depression Rating Scale scores over the course of the trial, and a better outcome in the targeted group compared with the standard localization group at 4 weeks (p=0.02). Significant differences were also found on secondary outcome variables. The use of neuro-navigational methods to target a specific DLPFC site appears to enhance response to rTMS treatment in depression. Further research is required to confirm this in larger samples, or to establish whether an alternate method based on surface anatomy, including measurement from motor cortex, can be substituted for the standard 5 cm method.
0

Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial

Yechiel Levkovitz et al.Feb 1, 2015
+22
F
M
Y
Major depressive disorder (MDD) is a prevalent and disabling condition, and many patients do not respond to available treatments. Deep transcranial magnetic stimulation (dTMS) is a new technology allowing non-surgical stimulation of relatively deep brain areas. This is the first double-blind randomized controlled multicenter study evaluating the efficacy and safety of dTMS in MDD. We recruited 212 MDD outpatients, aged 22–68 years, who had either failed one to four antidepressant trials or not tolerated at least two antidepressant treatments during the current episode. They were randomly assigned to monotherapy with active or sham dTMS. Twenty sessions of dTMS (18 Hz over the prefrontal cortex) were applied during 4 weeks acutely, and then biweekly for 12 weeks. Primary and secondary efficacy endpoints were the change in the Hamilton Depression Rating Scale (HDRS-21) score and response/remission rates at week 5, respectively. dTMS induced a 6.39 point improvement in HDRS-21 scores, while a 3.28 point improvement was observed in the sham group (p=0.008), resulting in a 0.76 effect size. Response and remission rates were higher in the dTMS than in the sham group (response: 38.4 vs. 21.4%, p=0.013; remission: 32.6 vs. 14.6%, p=0.005). These differences between active and sham treatment were stable during the 12-week maintenance phase. dTMS was associated with few and minor side effects apart from one seizure in a patient where a protocol violation occurred. These results suggest that dTMS constitutes a novel intervention in MDD, which is efficacious and safe in patients not responding to antidepressant medications, and whose effect remains stable over 3 months of maintenance treatment.
0

A Randomized, Controlled Trial of Sequential Bilateral Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression

Paul Fitzgerald et al.Jan 1, 2006
+3
A
J
P
OBJECTIVE: High-frequency left-side repetitive transcranial magnetic stimulation (rTMS) and low-frequency stimulation to the right prefrontal cortex have both been shown to have antidepressant effects, but doubts remain about the magnitude of previously demonstrated treatment effects. The authors evaluated sequentially combined high-frequency left-side rTMS and low-frequency rTMS to the right prefrontal cortex for treatment-resistant depression. METHOD: The authors conducted a 6-week double-blind, randomized, sham-controlled trial in 50 patients with treatment-resistant depression. Three trains of low-frequency rTMS to the right prefrontal cortex of 140 seconds’ duration at 1 Hz were applied daily, followed immediately by 15 trains of 5 seconds’ duration of high-frequency left-side rTMS at 10 Hz. Sham stimulation was applied with the coil angled at 45° from the scalp, resting on the side of one wing of the coil. The primary outcome variable was the score on the Montgomery-Åsberg Depression Rating Scale. RESULTS: There was a significantly greater response to active than sham stimulation at 2 weeks and across the full duration of the study. A significant proportion of the study group receiving active treatment met response (11 of 25 [44%]) or remission (nine of 25 [36%]) criteria by study end compared to the sham stimulation group (two of 25 [8%] and none of 25 respectively). CONCLUSIONS: Sequentially applying both high-frequency left-side rTMS and low-frequency rTMS to the right prefrontal cortex, has substantial treatment efficacy in patients with treatment-resistant major depression. The treatment response accumulates to a clinically meaningful level over 4 to 6 weeks of active treatment.
49

Expansion of a frontostriatal salience network in individuals with depression

Charles Lynch et al.Aug 14, 2023
+24
I
F
C
Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
2

Targeting the pathological network: feasibility of network-based optimization of transcranial magnetic stimulation coil placement for treatment of psychiatric disorders

Zhengcao Cao et al.Oct 24, 2022
+9
Z
Z
Z
Abstract It has been recognized that the efficacy of TMS-based modulation may depend on the network profile of the stimulated regions throughout the brain. However, what profile of this stimulation network optimally benefits treatment outcomes is yet to be addressed. The answer to the question is crucial for informing network-based optimization of stimulation parameters, such as coil placement, in TMS treatments. In this study, we aimed to investigate the feasibility of taking a disease-specific network as the target of stimulation network for guiding individualized coil placement in TMS treatments. We present here a novel network-based model for TMS targeting of the pathological network. First, combining E-field modeling and resting-state functional connectivity, stimulation networks were modeled from locations and orientations of the TMS coil. Second, the spatial anti-correlation between the stimulation network and the pathological network of a given disease was hypothesized to predict the treatment outcome. The proposed model was validated to predict treatment efficacy from the position and orientation of TMS coils in two depression cohorts and one auditory verbal hallucinations cohort. We further demonstrate the utility of the proposed model in guiding individualized TMS treatment for psychiatric disorders. In this proof-of-concept study, we demonstrated the feasibility of the novel network-based targeting strategy that uses the whole-brain, system-level abnormity of a specific psychiatric disease as a target. Results based on empirical data suggest that the strategy may potentially be utilized to identify individualized coil parameters for maximal therapeutic effects. Highlights Proposed a model of targeting pathological brain networks for pre-treatment TMS coil placement planning in the treatment of psychiatric disorders; Validated the network targeting model in three cohorts of patients with depression or auditory verbal hallucinations, via prediction of individual TMS treatment efficacy from the parameters of coil placement; Demonstrated the utility of the network targeting model in guiding individualized TMS coil placement.
0

Densely sampled stimulus-response map of human cortex with single pulse TMS-EEG and its relation to whole brain neuroimaging measures

Yinming Sun et al.Jun 17, 2024
+8
C
M
Y
Large-scale networks underpin brain functions. How such networks respond to focal stimulation can help decipher complex brain processes and optimize brain stimulation treatments. To map such stimulation-response patterns across the brain non-invasively, we recorded concurrent EEG responses from single-pulse transcranial magnetic stimulation (i.e., TMS-EEG) from over 100 cortical regions with two orthogonal coil orientations from one densely-sampled individual. We also acquired Human Connectome Project (HCP)-styled diffusion imaging scans (six), resting-state functional Magnetic Resonance Imaging (fMRI) scans (120 mins), resting-state EEG scans (108 mins), and structural MR scans (T1- and T2-weighted). Using the TMS-EEG data, we applied network science-based community detection to reveal insights about the brain's causal-functional organization from both a stimulation and recording perspective. We also computed structural and functional maps and the electric field of each TMS stimulation condition. Altogether, we hope the release of this densely sampled (n=1) dataset will be a uniquely valuable resource for both basic and clinical neuroscience research.
Load More