RM
Richard McDowell
Author with expertise in Mammalian Circadian Rhythms and Physiology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
3
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Beyond Lux: Methods for Species and Photoreceptor-Specific Quantification of Ambient Light for Mammals

Richard McDowell et al.Aug 27, 2023
+5
T
A
R
Abstract Background Light is a key environmental regulator of physiology and behaviour. Mistimed or insufficient light disrupts circadian rhythms and is associated with impaired health and well-being across mammals. Appropriate lighting is therefore crucial for indoor housed mammals. The most commonly used measurement for lighting is lux. However, this employs a spectral weighting function based on human perceived brightness and is not suitable for ‘non-visual’ effects of light or use across species. In humans, a photoreceptor-specific (α-opic) metrology system has been proposed as a more appropriate way of measuring light. Results Here we establish technology to allow this α-opic measurement approach to be readily extended to any mammalian species, accounting for differences in photoreceptor types, photopigment spectral sensitivities, and eye anatomy. Since measuring photopigment spectral sensitivity can be hard to derive for novel animals and photoreceptors, we developed a high-throughput, easy-to-use, method to derive spectral sensitivities for recombinantly expressed melanopsins and use it to establish the spectral sensitivity of melanopsin from 12 non-human mammals. We further address the need for simple measurement strategies for species-specific α-opic measures by developing an accessible online toolbox for calculating these units and validating an open hardware, low-cost, multichannel light sensor for ‘point and click’ measurement. We finally demonstrate that species-specific α-opic measurements are superior to photopic lux as predictors of physiological responses to light in mice and allow ecologically relevant comparisons of photosensitivity between species. Conclusion Our study demonstrates that measuring light more accurately using species-specific α-opic units is superior to the existing unit of photopic lux and holds the promise of improvements to the health and welfare of animals, scientific research reproducibility, agricultural productivity, and energy usage.
0

Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment

Kate Rawlinson et al.Feb 4, 2019
+10
F
J
K
Animals detect light using opsin photopigments. One recently classified opsin clade, the xenopsins, found in lophotrochozoans, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found that it is expressed in a larval eyespot, and in an abundant extraocular cell type around the adult brain. These distinct cells house hundreds of cilia in an intra-cellular vacuole (a phaosome). Cellular assays show Mc xenopsin forms a photopigment and couples to Gαi/o in response to light. These findings reveal a novel photoreceptor cell type and opsin/G-protein couple, and highlight the convergent enclosure of photosensitive cilia in flatworm phaosomes and jawed vertebrate rods.
6

Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons

Jessica Rodgers et al.Jun 3, 2020
+13
M
B
J
Abstract There is no consensus on the best optogenetic tool for neuronal inhibition. Lamprey parapinopsin (‘Lamplight’) is a Gi/o-coupled bistable animal opsin that can be activated and deactivated by short and long wavelength light, respectively. Since native mechanisms of neuronal inhibition frequently employ Gi/o signalling, we asked here whether Lamplight could be used for optogenetic silencing. We show that short (405nm) and long (525nm) wavelength pulses repeatedly switch Lamplight between stable signalling active and inactive states, and that combining these wavelengths can be used to achieve intermediate levels of activity. We demonstrate that these properties can be applied to produce switchable and scalable neuronal hyperpolarisation, and suppression of spontaneous spike firing in the mouse hypothalamic suprachiasmatic nucleus. We show that expressing Lamplight in (predominantly) ON bipolar cells can photosensitise retinas following advanced photoreceptor degeneration, and that 405 and 525nm stimuli can produce responses of opposite sign in output neurons of the retina. Lamplight-driven responses to both activating (405nm) and deactivating (525nm) light can occur within 500ms and be elicited by intensities at least 10x below threshold for available inhibitory optogenetic tools. We conclude that Lamplight can co-opt endogenous signalling mechanisms to allow optogenetic inhibition that is scalable, sustained and rapidly reversible.