MT
Masahiko Takada
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(73% Open Access)
Cited by:
2,991
h-index:
67
/
i10-index:
284
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Differential Presynaptic Localization of Metabotropic Glutamate Receptor Subtypes in the Rat Hippocampus

Ryuichi Shigemoto et al.Oct 1, 1997
Neurotransmission in the hippocampus is modulated variously through presynaptic metabotropic glutamate receptors (mGluRs). To establish the precise localization of presynaptic mGluRs in the rat hippocampus, we used subtype-specific antibodies for eight mGluRs (mGluR1-mGluR8) for immunohistochemistry combined with lesioning of the three major hippocampal pathways: the perforant path, mossy fiber, and Schaffer collateral. Immunoreactivity for group II (mGluR2) and group III (mGluR4a, mGluR7a, mGluR7b, and mGluR8) mGluRs was predominantly localized to presynaptic elements, whereas that for group I mGluRs (mGluR1 and mGluR5) was localized to postsynaptic elements. The medial perforant path was strongly immunoreactive for mGluR2 and mGluR7a throughout the hippocampus, and the lateral perforant path was prominently immunoreactive for mGluR8 in the dentate gyrus and CA3 area. The mossy fiber was labeled for mGluR2, mGluR7a, and mGluR7b, whereas the Schaffer collateral was labeled only for mGluR7a. Electron microscopy further revealed the spatial segregation of group II and group III mGluRs within presynaptic elements. Immunolabeling for the group III receptors was predominantly observed in presynaptic active zones of asymmetrical and symmetrical synapses, whereas that for the group II receptor (mGluR2) was found in preterminal rather than terminal portions of axons. Target cell-specific segregation of receptors, first reported for mGluR7a (Shigemoto et al,., 1996), was also apparent for the other group III mGluRs, suggesting that transmitter release is differentially regulated by 2-amino-4-phosphonobutyrate-sensitive mGluRs in individual synapses on single axons according to the identity of postsynaptic neurons.
0

Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area

Atsushi Nambu et al.Apr 15, 1996
The subthalamic nucleus (STN) is a key structure for somatic motor control via the basal ganglia. In the present study, we demonstrate that the STN of the macaque monkey has dual sets of body part representations. Each of the two separate portions of the STN is characterized with somatotopically arranged direct cortical inputs that are derived from the primary motor cortex (MI) and the supplementary motor area (SMA). The first set of body part representations is transformed from the MI to the lateral STN, whereas the second set is transformed from the SMA to the medial STN. Intracortical microstimulation mapping was carried out to guide paired injections of anterograde tracers into somatotopically corresponding regions of the MI and the SMA. We found that direct inputs from the MI were allocated mostly within the lateral half of the STN, whereas those from the SMA were distributed predominantly within its medial half. Of particular interest was that the arrangement of somatotopical representations from the SMA to the medial STN was reversed against the ordering of those from the MI to the lateral STN; the orofacial, forelimb, and hindlimb parts were represented from medial to lateral within the medial STN, whereas these body parts were represented, in the inverse order, mediolaterally within the lateral STN. Moreover, inputs from homotopical MI and SMA regions were found to converge only partially into the STN. The present findings could account for somatotopically specific involuntary movements manifested in hemiballism that is caused by destruction of the STN.
0
Paper
Citation485
0
Save
0

Comparisons of Noninvasive Bone Mineral Measurements in Assessing Age‐Related Loss, Fracture Discrimination, and Diagnostic Classification

S. Grampp et al.May 1, 1997
Abstract The purpose of this study was to examine the commonly available methods of noninvasively assessing bone mineral status across three defined female populations to examine their interrelationships, compare their respective abilities to reflect age‐ and menopause‐related bone loss, discriminate osteoporotic fractures, and classify patients diagnostically. A total of 47 healthy premenopausal (age 33 ± 7 years), 41 healthy postmenopausal (age 64 ± 9 years), and 36 osteoporotic postmenopausal (age 70 ± 6 years) women were examined with the following techniques: (1) quantitative computed tomography of the L1–L4 lumbar spine for trabecular (QCT TRAB BMD) and integral (QCT INTG BMD) bone mineral density (BMD); (2) dual X‐ray absorptiometry of the L1–L4 posterior‐anterior (DXA PA BMD) and L2–L4 lateral (DXA LAT BMD) lumbar spine, of the femoral neck (DXA NECK BMD) and trochanter (DXA TROC BMD), and of the ultradistal radius (DXA UD BMD) for integral BMD; (3) peripheral QCT of the distal radius for trabecular BMD (pQCT TRAB BMD) and cortical bone mineral content (BMC) (pQCT CORT BMC); (4) two radiographic absorptiometric techniques of the metacarpal (RA METC BMD) and phalanges (RA PHAL BMD) for integral BMD; and (5) two quantitative ultrasound devices (QUS) of the calcaneus for speed of sound (SOS CALC) and broadband ultrasound attenuation (BUA CALC). In general, correlations ranged from ( r = 0.10−0.93) among different sites and techniques. We found that pQCT TRAB BMD correlated poorly ( r ≤ 0.46) with all other measurements except DXA UD BMD ( r = 0.62, p ≤ 0.0001) and RA PHAL BMD ( r = 0.52, p ≤ 0.0001). The strongest correlation across techniques was between QCT INT BMD and DXA LAT BMD ( r = 0.87, p ≤ 0.0001), and the weakest correlation within a technique was between pQCT TRAB BMD and pQCT CORT BMC ( r = 0.25, p ≤ 0.05). Techniques showing the highest correlations with age in the healthy groups also showed the greatest differences among groups. They also showed the best discrimination (as measured by the odds ratios) for the distinction between healthy postmenopausal and osteoporotic postmenopausal groups based on age‐adjusted logistic regression analysis. For each anatomic site, the techniques providing the best results were: (1) spine, QCT TRAB BMD (annual loss, −1.2% [healthy premenopausal and healthy postmenopausal]); Student's t ‐value [not the T score], 5.4 [healthy postmenopausal vs. osteoporotic postmenopausal]; odds ratio, 4.3 [age‐adjusted logistic regression for healthy postmenopausal vs. osteoporotic postmenopausal]); (2) hip, DXA TROC BMD (−0.46; 3.5; 2.2); (3) radius, DXA UD BMD (−0.44; 3.3; 1.9) and pQCT, CORT BMC (−0.72; 2.9; 1.7); (4) hand, RA PHAL (−0.51; 3.6; 2.0); and (5) calcaneus, SOS (−0.09; 3.4; 2.1) and BUA (−0.52; 2.6; 1.7). Despite these performance trends, the differences among sites and techniques were statistically insignificant ( p > 0.05) using age‐adjusted receiver operating characteristic (ROC) curve analysis. Nevertheless, kappa score analysis (using −2.0 T score as the cut‐off value for osteopenia and −2.5 T score for osteoporosis) showed that in general the diagnostic agreement among these measurements in classifying women as osteopenic or osteoporotic was poor, with kappa scores averaging about 0.4 (exceptions were QCT TRAB/INTG BMD, DXA LAT BMD, and RA PHAL BMD, with kappa scores ranging from 0.63 to 0.89). Often different patients were estimated at risk by using different measurement sites or techniques.
0

Subthalamo‐pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia

Yoshihisa Tachibana et al.Oct 31, 2011
Abstract Parkinson’s disease is characterized by degeneration of nigral dopaminergic neurons, leading to a wide variety of psychomotor dysfunctions. Accumulated evidence suggests that abnormally synchronized oscillations in the basal ganglia contribute to the expression of parkinsonian motor symptoms. However, the mechanism that generates abnormal oscillations in a dopamine‐depleted state remains poorly understood. We addressed this question by examining basal ganglia neuronal activity in two 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐treated parkinsonian monkeys. We found that systemic administration of l ‐3,4‐dihydroxyphenylalanine ( l ‐DOPA; dopamine precursor) decreased abnormal neuronal oscillations (8–15 Hz) in the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) during the ON state when parkinsonian signs were alleviated and during l ‐DOPA‐induced dyskinesia. GPi oscillations and parkinsonian signs were suppressed by silencing of the STN with infusion of muscimol (GABA A receptor agonist). Intrapallidal microinjection of a mixture of 3‐(2‐carboxypiperazin‐4‐yl)‐propyl‐1‐phosphonic acid (CPP; N ‐methyl‐ d ‐aspartate receptor antagonist) and 1,2,3,4‐tetrahydro‐6‐nitro‐2,3‐dioxo‐benzo[ f ]quinoxaline‐7‐sulfonamide (NBQX; AMPA/kainate receptor antagonist) also decreased the oscillations in the GPi and the external segment of the globus pallidus (GPe). Neuronal oscillations in the STN were suppressed after intrasubthalamic microinjection of CPP/NBQX to block glutamatergic afferents of the STN. The STN oscillations were further reduced by muscimol inactivation of the GPe to block GABAergic inputs from the GPe. These results suggest that, in the dopamine‐depleted state, glutamatergic inputs to the STN and reciprocal GPe–STN interconnections are both important for the generation and amplification of the oscillatory activity of STN neurons, which is subsequently transmitted to the GPi, thus contributing to the symptomatic expression of Parkinson’s disease.
0
Citation230
0
Save
Load More