NR
Nadia Rosenthal
Author with expertise in Molecular Mechanisms of Cardiac Remodeling and Repair
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
40
(65% Open Access)
Cited by:
11,181
h-index:
82
/
i10-index:
219
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Revisiting Cardiac Cellular Composition

Alexander Pinto et al.Feb 4, 2016
Rationale: Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration. Objective: To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells, and fibroblasts in the mouse and human heart. Methods and Results: Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart. Immunohistochemistry revealed that endothelial cells constitute >60%, hematopoietic-derived cells 5% to 10%, and fibroblasts <20% of the nonmyocytes in the heart. A refined cell isolation protocol and an improved flow cytometry approach provided an independent means of determining the relative abundance of nonmyocytes. High-dimensional analysis and unsupervised clustering of cell populations confirmed that endothelial cells are the most abundant cell population. Interestingly, fibroblast numbers are smaller than previously estimated, and 2 commonly assigned fibroblast markers, Sca-1 and CD90, under-represent fibroblast numbers. We also describe an alternative fibroblast surface marker that more accurately identifies the resident cardiac fibroblast population. Conclusions: This new perspective on the abundance of different cell types in the heart demonstrates that fibroblasts comprise a relatively minor population. By contrast, endothelial cells constitute the majority of noncardiomyocytes and are likely to play a greater role in physiological function and response to injury than previously appreciated.
0
Citation1,149
0
Save
1

Macrophages are required for adult salamander limb regeneration

James Godwin et al.May 20, 2013
The failure to replace damaged body parts in adult mammals results from a muted growth response and fibrotic scarring. Although infiltrating immune cells play a major role in determining the variable outcome of mammalian wound repair, little is known about the modulation of immune cell signaling in efficiently regenerating species such as the salamander, which can regrow complete body structures as adults. Here we present a comprehensive analysis of immune signaling during limb regeneration in axolotl, an aquatic salamander, and reveal a temporally defined requirement for macrophage infiltration in the regenerative process. Although many features of mammalian cytokine/chemokine signaling are retained in the axolotl, they are more dynamically deployed, with simultaneous induction of inflammatory and anti-inflammatory markers within the first 24 h after limb amputation. Systemic macrophage depletion during this period resulted in wound closure but permanent failure of limb regeneration, associated with extensive fibrosis and disregulation of extracellular matrix component gene expression. Full limb regenerative capacity of failed stumps was restored by reamputation once endogenous macrophage populations had been replenished. Promotion of a regeneration-permissive environment by identification of macrophage-derived therapeutic molecules may therefore aid in the regeneration of damaged body parts in adult mammals.
1
Citation745
0
Save
0

Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function

Elisabeth Barton-Davis et al.Dec 22, 1998
During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in differentiated muscle fibers. We demonstrate that the IGF-I expression promotes an average increase of 15% in muscle mass and a 14% increase in strength in young adult mice, and remarkably, prevents aging-related muscle changes in old adult mice, resulting in a 27% increase in strength as compared with uninjected old muscles. Muscle mass and fiber type distributions were maintained at levels similar to those in young adults. We propose that these effects are primarily due to stimulation of muscle regeneration via the activation of satellite cells by IGF-I. This supports the hypothesis that the primary cause of aging-related impairment of muscle function is a cumulative failure to repair damage sustained during muscle utilization. Our results suggest that gene transfer of IGF-I into muscle could form the basis of a human gene therapy for preventing the loss of muscle function associated with aging and may be of benefit in diseases where the rate of damage to skeletal muscle is accelerated.
0
Citation699
0
Save
0

A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair

Daniela Ruffell et al.Sep 25, 2009
Macrophages play an essential role in the resolution of tissue damage through removal of necrotic cells, thus paving the way for tissue regeneration. Macrophages also directly support the formation of new tissue to replace the injury, through their acquisition of an anti-inflammatory, or M2, phenotype, characterized by a gene expression program that includes IL-10, the IL-13 receptor, and arginase 1. We report that deletion of two CREB-binding sites from the Cebpb promoter abrogates Cebpb induction upon macrophage activation. This blocks the downstream induction of M2-specific Msr1 , Il10 , II13ra , and Arg-1 genes, whereas the inflammatory (M1) genes Il1 , Il6 , Tnfa , and Il12 are not affected. Mice carrying the mutated Cebpb promoter (βΔCre) remove necrotic tissue from injured muscle, but exhibit severe defects in muscle fiber regeneration. Conditional deletion of the Cebpb gene in muscle cells does not affect regeneration, showing that the C/EBPβ cascade leading to muscle repair is muscle-extrinsic. While βΔCre macrophages efficiently infiltrate injured muscle they fail to upregulate Cebpb , leading to decreased Arg-1 expression. CREB-mediated induction of Cebpb expression is therefore required in infiltrating macrophages for upregulation of M2-specific genes and muscle regeneration, providing a direct genetic link between these two processes.
0
Citation551
0
Save
0

Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12.

Thomas Braun et al.Mar 1, 1990
The Myf-6 gene, a novel member of the human gene family of muscle determination factors has been detected by its highly conserved sequence coding for a putative helix-loop-helix domain. This sequence motif is a common feature of all Myf factors and other regulatory proteins. The new Myf gene is located on human chromosome 12, approximately 6.5 Kb upstream of the Myf-5 locus in a closely linked cluster of myogenic determination genes. Myf-6 cDNAs were isolated from human and mouse skeletal muscle, the only tissue in which expression of the corresponding mRNA was observed. In contrast to human primary muscle cell cultures which express moderate levels of Myf-6 mRNA, most established rodent muscle cell lines completely lack this mRNA. Myogenic 10T1/2 cells, however, induced by the expression of either pEMSV-Myf-4 or pEMSV-Myf-5 activate their endogenous mouse Myf-6 gene. Constitutive expression of Myf-6 cDNA in C3H 10T1/2 fibroblasts establishes the muscle phenotype at a similar frequency to the previously characterized myogenic factors. Moreover, muscle-specific CAT reporter constructs containing either the human myosin light chain (MLC) enhancer or the promoter of the embryonic myosin light chain gene are activated in NIH 3T3 fibroblasts or in CV1 kidney cells by cotransfection of Myf-6 expression vehicles. This transcriptional activation occurs in the absence of any apparent conversion of the cellular phenotype of the recipient cells. Glutathione-S-transferase fusion proteins with Myf-3, Myf-4 or Myf-5 specifically bind to a MEF-like consensus sequence present in the human MLC enhancer and the MLC1 emb promoter. In contrast, the Myf-6 hybrid protein interacts weakly with the same sequences showing lower affinity and reduced specificity. Since co-expressed pEMSV-Myf-6, nevertheless, is able to activate transcription of the MLC-CAT reporter constructs in non-muscle tissue culture cells, the different DNA binding properties in vitro might suggest that transactivation of gene expression by Myf-6 involves distinct binding sites and/or additional protein factors.
0

Immunochemical detection of advanced glycosylation end products in vivo.

Zenji Makita et al.Mar 1, 1992
Reducing sugars react with protein amino groups to form a diverse group of protein-bound moieties with fluorescent and cross-linking properties. These compounds, called advanced glycosylation end products (AGEs), have been implicated in the structural and functional alterations of proteins that occur during aging and long-term diabetes. Although several AGEs have been identified on the basis of de novo synthesis and tissue isolation procedures, the measurement of AGE compounds in vivo has remained difficult. As an approach to the study of AGE formation in vivo, we prepared polyclonal antiserum to an AGE epitope(s) which forms in vitro after incubation of glucose with ribonuclease (RNase). This antiserum proved suitable for the detection of AGEs which form in vivo. Both diabetic tissue and serum known to contain elevated levels of AGEs readily competed for antibody binding. Cross-reactivity studies revealed the presence of a common AGE epitope(s) which forms after the incubation of diverse proteins with glucose. Cross-reactive epitopes also formed with glucose 6-phosphate or fructose. These data suggest that tissue AGEs which form in vivo appear to contain a common immunological epitope which cross-reacts with AGEs prepared in vitro, supporting the concept that immunologically similar AGE structures form from the incubation of sugars with different proteins (Horiuchi, S., Araki, N., and Morino, Y. (1991) J. Biol. Chem. 266, 7329-7332). None of the known AGEs, such as 4-furanyl-2-furoyl-1H-imidazole, 1-alkyl-2-formyl-3,4-diglycosylpyrrole, pyrraline, carboxymethyllysine, or pentosidine, were found to compete for binding to anti-AGE antibody. These data further suggest that the dominant AGE epitope which forms from the reaction of glucose with proteins under native conditions is immunologically distinct from the structurally defined AGEs described to date.
Load More