VM
Valentina Mollo
Author with expertise in Neural Interface Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
0
h-index:
14
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids

Xiao Yang et al.Sep 22, 2023
+10
Y
T
X
Organoids and assembloids have emerged as a promising platform to model aspects of nervous system development. Longterm, minimally-invasive recordings in these multi-cellular systems are essential for developing disease models. Current technologies, such as patch-clamp, penetrating microelectrodes, planar electrode arrays and substrate-attached flexible electrodes, do not, however, allow chronic recording of organoids in suspension, which is necessary to preserve their architecture. Inspired by the art of kirigami, we developed flexible electronics that transition from a 2D pattern to a 3D basketlike configuration to accommodate the long-term culture of organoids in suspension. This platform, named kirigami electronics (KiriE), integrates with and enables chronic recording of cortical organoids while preserving morphology, cytoarchitecture, and cell composition. KiriE can be integrated with optogenetic and pharmacological stimulation and model disease. Moreover, KiriE can capture activity in cortico-striatal assembloids. Moving forward, KiriE could reveal disease phenotypes and activity patterns underlying the assembly of the nervous system.
0

Nanoscale investigation in 3D scaffolds of cell-material interactions for tissue-engineering

Donata Iandolo et al.Aug 2, 2018
+5
D
D
D
Cell fate is largely determined by interactions that occur at the interface between cells and their surrounding microenvironment. For this reason, especially in the field of cell- and tissue-engineering, there is a growing interest in developing characterization techniques that allow a deep evaluation of cell-material interaction at the nanoscale, particularly focusing on cell adhesion processes. While for 2D culturing systems a consolidated series of tools already satisfy this need, in 3D environments, more closely recapitulating complex in vivo structures, there is still a lack of procedure furthering the comprehension of cell-material interactions. Here, we report for the first time the use of a SEM/FIB system for the characterization of cellular adhesion in 3D scaffolds fabricated by means of different techniques. Our results clearly show the capability of the developed approach to finely resolve both scaffold-cells interface and nanometer scale features of cell bodies involved in the upregulation of cellular behavior. These results are relevant for studying cellular guidance strategies and for the consequent design of more efficient cell-instructive platforms for tissue-engineering applications as well as for in vitro 3D models.
0

Electron Microscopy of Neurons on Biomimetic Substrates

Claudia Bovio et al.Jan 1, 2024
F
A
V
C
Recent advancements in nano- and microfabrication techniques have led to the development of highly biomimetic patterned substrates able to guide neuronal sprouting, routing, elongation, and branching. Such substrates, recapitulating shapes and geometries found in the native brain, may pave the way toward the development of cell instructive paradigms able to guide morphogenesis at the neuron-material interface. In this scenario, high-resolution electron microscopy approaches, owing to their ability of discerning the details of neural morphogenesis at a nanoscale resolution, may play a crucial role in unravelling the fine ultrastructure of neurons interfacing with biomimetic structured substrates.