MM
Matthias Merkel
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
333
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
26

Genetic and geometric heredity interact to drive polarized flow in the Drosophila embryo

Emily Gehrels et al.Jul 13, 2022
Abstract Tissue flow during morphogenesis is commonly driven by local constriction of cell cortices, which is caused by activation of actomyosin contractility. This can lead to long-range flows due to tissue viscosity. However, in the absence of cell-intrinsic polarized forces or polarity in forces external to the tissue, these flows must be symmetric and centered around the region of contraction. Polarized tissue flows have been previously demonstrated to arise from the coupling of such contractile flows to points of increased friction or adhesion to external structures. However, we show with experiments and modeling that the onset of polarized tissue flow in early Drosophila morphogenesis occurs independent of adhesion and is instead driven by a geometric coupling of apical actomyosin contractility to tissue curvature. Particularly, the onset of polarized flow is driven by a mismatch between the position of apical myosin activation and the position of peak curvature at the posterior pole of the embryo. Our work demonstrates how genetic and geometric information inherited from the mother interact to create polarized flow during embryo morphogenesis.
26
Citation3
0
Save
0

Marangoni-like tissue flows enhance symmetry breaking of embryonic organoids

Simon Gsell et al.Jan 1, 2023
During early development of multi-cellular animals, cells self-organize to set up the body axes, such as the primary head-to-tail axis, based on which the later body plan is defined. Several signaling pathways are known to control body axis formation. Here, we show, however, that tissue mechanics plays an important role during this process. We focus on the emergence of a primary axis in initially spherical aggregates of mouse embryonic stem cells, which mirrors events in the early mouse embryo. These aggregates break rotational symmetry to establish an axial organization with domains of different expression profiles, e.g. of the transcription factor T/Bra and the adhesion molecule E-cadherin. Combining quantitative microscopy and physical modeling, we identify largescale tissue flows with a recirculation component and demonstrate that they significantly contribute to symmetry breaking. We show that the recirculating flows are explained by a difference in tissue surface tension across domains, akin to Marangoni flows, which we further confirm by aggregate fusion experiments. Our work highlights that body axis formation is not only driven by biochemical processes, but that it can also be amplified by tissue flows. We expect this type of amplification to operate in many other organoid and in-vivo systems.
0

Anisotropy links cell shapes to a solid-to-fluid transition during convergent extension

Xun Wang et al.Sep 25, 2019
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in internal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar polarized myosin II and experiences anisotropic forces from neighboring tissues, and we show that in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues two experimentally accessible metrics of cell patterns, the cell shape index and a cell alignment index, are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband indicate a solid-to-fluid transition that corresponds to the onset of cell rearrangement and convergent extension in wild-type embryos and are also consistent with more solid-like behavior in bnt mutant embryos. Thus, the onset of cell rearrangement in the germband can be predicted by a combination of cell shape and alignment. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue shape changes during rapid developmental events.