PM
Patrick Monnahan
Author with expertise in Genome Evolution and Polyploidy in Plants
University of Minnesota, Norwich Research Park, John Innes Centre
+ 2 more
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(36% Open Access)
Cited by:
23
h-index:
16
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Convergence and novelty in adaptation to whole genome duplication in three independent polyploids

Sian Bray et al.May 7, 2020
+8
M
E
S
Abstract Convergent evolution is observed broadly across the web of life, but the degree of evolutionary constraint during adaptation of core intracellular processes is not known. High constraint has been assumed for conserved processes, such as cell division and DNA repair, but reports of nimble evolutionary shifts in these processes have confounded this expectation. Whole genome duplication (WGD) necessitates the concerted adjustment of a wide range of fundamental intracellular functions but nevertheless has been repeatedly survived in all kingdoms. Given this repeated adaptation to WGD despite obvious intracellular challenges to core processes such as meiosis, we asked: how do lineages not only survive WGD, but sometimes ultimately thrive? Are the solutions employed constrained or diverse? Here we detect genes and processes under selection following WGD in the Cochlearia species complex by performing a scan for selective sweeps following WGD in a large-scale survey of 73 resequenced individuals from 23 populations across Europe. We then contrast our results from two independent WGDs in Arabidopsis arenosa and Cardamine amara. We find that while WGD does require the adaptation of particular functional processes in all three cases, the specific genes recruited to respond are highly flexible. We also observe evidence of varying degrees of convergence between different cases. Our results point to a polygenic basis for the distributed adaptive systems that control meiotic crossover number, ionomic rewiring, cell cycle control, and nuclear regulation. Given the sheer number of loci under selection post-WGD, we surmise that this polygenicity may explain the general lack of convergence between these species that are ~30 million years diverged. Based on our results, we speculate that adaptive processes themselves – such as the rate of generation of structural genomic variants—may be altered by WGD in nascent autopolyploids, contributing to the occasionally spectacular adaptability of autopolyploids observed across kingdoms.
0
Paper
Citation8
0
Save
0

Whole Genome Variation of Transposable Element Insertions in a Maize Diversity Panel

Yefeng Qiu et al.May 29, 2024
+9
R
C
Y
ABSTRACT Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 non-redundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e. LTRs, Helitrons, TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R 2 < 0.5) that potentially represent information that has not been well captured in previous SNP based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize, and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.
0

Genomic novelty and process-level convergence in adaptation to whole genome duplication

Magdalena Bohutínská et al.May 7, 2020
+5
P
M
M
Abstract Whole genome duplication (WGD) occurs across kingdoms and can promote adaptation. However, a sudden increase in chromosome number, as well as changes in physiology, are traumatic to conserved processes. Previous work in Arabidopsis arenosa revealed a coordinated genomic response to WGD, involving physically interacting meiosis proteins, as well as changes related to cell cycle and ion homeostasis. Here we ask: is this coordinated shift in the same processes repeated in another species following WGD? To answer this, we resequenced and cytologically assessed replicated populations from a diploid/autotetraploid system, Cardamine amara , and test the hypothesis that gene and process-level convergence will be prevalent between these two WGDs adaptation events. Interestingly, we find that gene-level convergence is negligible, with no more in common than would be expected by chance. This was most clear at meiosis-related genes, consistent with our cytological assessment of somewhat lower meiotic stability in C. amara , despite establishment and broad occurrence of the autotetraploid in nature. In contrast, obvious convergence at the level of functional processes, including meiotic cell cycle, chromosome organisation and stress signalling was evident. This indicates that the two autotetraploids survived challenges attendant to WGD via contrasting solutions, modifying different players from similar processes. Overall, this work gives the first insight into the salient adaptations required to cope with a genome-doubled state and brings the first genomic evidence that autopolyploids can utilize multiple trajectories to achieve adaptation to WGD. We speculate that this flexibility increases the likelihood a nascent polyploid overcomes early stringent challenges to later access the spectrum of evolutionary opportunities of polyploidy. Significance statement Whole genome duplication (WGD) is a tremendous mutation and an important evolutionary force. It also presents immediate changes to meiosis and cell physiology that nascent polyploids must overcome to survive. Given the dual facts that WGD adaptation is difficult, but many lineages nevertheless survive WGD, we ask: how constrained are the evolutionary responses to a genome-doubled state? We previously identified candidate genes for WGD adaptation in Arabidopsis arenosa , which has natural diploid and tetraploid variants. Here we test for evolutionary convergence in adaptation to WGD in a species 17 million years distant, Cardamine amara . This work gives the first genomic insight into of how autopolyploids utilize multiple adaptive trajectories to manage a genome-doubled state.
0
Paper
Citation6
0
Save
8

Genetic Architecture of Kernel Compositional Variation in a Maize Diversity Panel

Jonathan Renk et al.Oct 24, 2023
+8
T
A
J
ABSTRACT Maize ( Zea mays L.) is a multi-purpose row crop grown worldwide, which overtime has often been bred for increased yield at the detriment of lower composition grain quality. Some knowledge of the genetic factors that affect quality traits has been discovered through the study of classical maize mutants. However, much of the underlying genetic architecture controlling these traits and the interaction between these traits remains unknown. To better understand variation that exists for grain compositional traits in maize, we evaluated 501 diverse temperate maize inbred lines in five unique environments and predicted 16 compositional traits (e.g. carbohydrates, protein, starch) based on the output of near-infrared (NIR) spectroscopy. Phenotypic analysis found substantial variation for compositional traits and the majority of variation was explained by genetic and environmental factors. Correlations and trade-offs among traits in different maize types (e.g. dent, sweetcorn, popcorn) were explored and significant differences and correlations were detected. In total, 22.9-71.1% of the phenotypic variation across these traits could be explained using 2,386,666 single nucleotide polymorphism (SNP) markers generated from whole genome resequencing data. A genome-wide association study (GWAS) was conducted using these same markers and found 70 statistically significant loci for 12 compositional traits. This study provides valuable insights in the phenotypic variation and genetic architecture underlying compositional traits that can be used in breeding programs for improving maize grain quality. Core Ideas Understanding kernel compositional variation is important for food grade corn improvement. Genetic and environmental factors account for most of the variation in compositional traits. A broad range in trait heritabilities was observed across compositional traits. Compositional trade-offs will be important to consider when conducting multitrait breeding. Compositional traits are mostly controlled by a large number of small effect loci.
0

The genomic architecture of flowering time varies across space and time in Mimulus guttatus

Patrick Monnahan et al.May 7, 2020
J
P
The degree to which genomic architecture varies across space and time is central to the evolution of genomes in response to natural selection. Bulked-segregant mapping combined with pooled sequencing provides an efficient method to estimate the effect of genetic variants on quantitative traits. We develop a novel likelihood framework to identify segregating variation within multiple populations and generations while accommodating estimation error on a sample-and SNP-specific basis. We use this method to map loci for flowering time within natural populations of Mimulus guttatus, collecting the early and late flowering plants from each of three neighboring populations and two consecutive generations. We find appreciable variation in genetic effects on flowering time across both time and space; the greatest differences evident between populations. Structural variants, such as inversions, and genes from multiple flowering time pathways exhibit the strongest associations with flowering time. It is also clear that genotype-by-environment interactions are an important influence on flowering time variation.
8

Predicting evolutionary change at the DNA level in a natural Mimulus population

Patrick Monnahan et al.Oct 24, 2023
+2
L
J
P
Abstract Evolution by natural selection occurs when the frequencies of genetic variants change because individuals differ in Darwinian fitness components such as survival or reproductive success. Differential fitness has been demonstrated in field studies of many organisms, but our ability to quantitatively predict allele frequency changes from fitness measurements remains unclear. Here, we characterize natural selection on millions of Single Nucleotide Polymorphisms (SNPs) across the genome of the annual plant Mimulus guttatus . We use fitness estimates to calibrate population genetic models that effectively predict observed allele frequency changes into the next generation. Hundreds of SNPs experienced “male selection” in 2013 with one allele at each SNP elevated in frequency among successful male gametes relative to the entire population of adults. In the following generation, allele frequencies at these SNPs consistently shifted in the predicted direction. A second year of study revealed that SNPs had effects on both viability and reproductive success with pervasive trade-offs between fitness components. SNPs favored by male selection were, on average, detrimental to survival. These trade-offs (antagonistic pleiotropy and temporal fluctuations in fitness) may be essential to the long-term maintenance of alleles undergoing substantial changes from generation to generation. Despite the challenges of measuring selection in the wild, the strong correlation between predicted and observed allele frequency changes suggests that population genetic models have a much greater role to play in forward-time prediction of evolutionary change. Author summary For the last 100 years, population geneticists have been deriving equations for Δp, the change in allele frequency owing to mutation, selection, migration, and genetic drift. Seldom are these equations used directly, to match a prediction for Δp to an observation of Δp. Here, we apply genomic sequencing technologies to samples from natural populations, obtaining millions of observations of Δp. We estimate natural selection on SNPs in a natural population of yellow monkeyflowers and find extensive evidence for selection through differential male success. We use the SNP-specific fitness estimates to calibrate a population genetic model that predicts observed Δp into the next generation. We find that when male selection favored one nucleotide at a SNP, that nucleotide increased in frequency in the next generation. Since neither observed nor predicted Δp are generally large in magnitude, we developed a novel method called “haplotype matching” to improve prediction accuracy. The method leverages intensive whole genome sequencing of a reference panel (187 individuals) to infer sequence-specific selection in thousands of field individuals sequenced at much lower coverage. This method proved essential to accurately predicting Δp in this experiment and further development may facilitate population genetic prediction more generally.
0

A synthesis of mapping experiments reveals extensive genomic structural diversity in the Mimulus guttatus species complex

Lex Flagel et al.May 7, 2020
+3
L
B
L
Understanding genomic structural variation such as inversions and translocations is a key challenge in evolutionary genetics. In this paper, we tackle this challenge by developing a novel statistical approach to comparative genetic mapping. The procedure couples a Hidden Markov Model with a Genetic Algorithm to detect large-scale structural variation using low-level sequencing data from multiple genetic mapping populations. We demonstrate the method using five distinct crosses within the flowering plant genus Mimulus. The synthesis of data from these experiments is first used to correct numerous errors (misplaced sequences) in the M. guttatus reference genome. Second, we confirm and/or detect eight large inversions polymorphic within the M. guttatus species complex. Finally, we show how this method can be applied in genomic scans to improve the accuracy and resolution of Quantitative Trait Locus (QTL) mapping.
0

Extreme copy number variation at a tRNA ligase affecting phenology and fitness in yellow monkeyflowers

Thomas Nelson et al.May 7, 2020
+5
M
P
T
Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on a tRNA ligase gene (Migut.N02091; RLG1a) exhibiting unprecedented, and fitness-relevant, CNV within an annual population of the yellow monkeyflower Mimulus guttatus. RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate frequency three-copy variants of RLG1a (trip+; 5/35 = 14%), and trip+ lines exhibited elevated RLG1a expression under multiple conditions. trip+ carriers, in addition to being over-represented in late-flowering and large-flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (P < 0.05). In wild population samples, we discovered an additional rare RLG1a variant (high+) that carries 250-300 copies of RLG1a totaling ~5.7Mb (20-40% of a chromosome). In the progeny of a high+ carrier, Mendelian segregation of diagnostic alleles and qPCR-based copy counts indicate that high+ is a single tandem array unlinked from the single copy RLG1a locus. In the wild, high+ carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; both p < 0.01), while single copy individuals were twice as fecund as either CNV type in a lush year (2016: p < 0.005). Our results demonstrate fluctuating selection on CNVs affecting phenological traits in a wild population, suggest that plant tRNA ligases mediate stress-responsive life-history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification.
0

Interspecific introgression mediates adaptation to whole genome duplication

Sarah Marburger et al.May 7, 2020
+7
P
P
S
Adaptive gene flow is a consequential evolutionary phenomenon across all kingdoms of life. While recognition of widespread gene flow is growing, examples lack of bidirectional gene flow mediating adaptations at specific loci that cooperatively manage core cellular processes. We previously described concerted molecular changes among physically interacting members of the meiotic machinery controlling crossover number and distribution upon adaptation to whole genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that escape from extinction following the trauma of WGD was mediated by adaptive gene flow between A. arenosa and its congener Arabidopsis lyrata. We show that A. lyrata underwent WGD more recently than A. arenosa, indicating that specific pre-adapted alleles donated by A. arenosa underwent selection and rescued the nascent A. lyrata tetraploids from early extinction. At the same time, we detect specific signals of gene flow in the opposite direction at other functionally interacting gene coding loci that display dramatic signatures of selective sweep in both tetraploid species. Cytological analysis shows that A. lyrata tetraploids exhibit similar levels of meiotic stability as A. arenosa tetraploids. Taken together, these data indicate that bidirectional gene flow allowed for an escape from extinction of the young autopolyploids, especially the rare tetraploid A. lyrata, and suggest that the merger of these species is greater than the sum of their parts.
2

Kinetochore and ionomic adaptation to whole genome duplication

Sian Bray et al.Sep 28, 2023
+15
M
T
S
Whole genome duplication (WGD) brings challenges to key processes like meiosis, but nevertheless is associated with diversification in all kingdoms. How is WGD tolerated, and what processes commonly evolve to stabilize the new polyploid lineage? Here we study this in Cochlearia spp., which have experienced multiple rounds of WGD in the last 300,000 years. We first generate a chromosome-scale genome and sequence 113 individuals from 33 diploid, tetraploid, hexaploid, and outgroup populations. We detect the clearest post-WGD selection signatures in functionally interacting kinetochore components and ion transporters. We structurally model these derived selected alleles, associating them with known WGD-relevant functional variation and compare these results to independent recent post-WGD selection in Arabidopsis arenosa and Cardamine amara. Some of the same biological processes evolve in all three WGDs, but specific genes recruited are flexible. This points to a polygenic basis for modifying systems that control the kinetochore, meiotic crossover number, DNA repair, ion homeostasis, and cell cycle. Given that DNA management (especially repair) is the most salient category with the strongest selection signal, we speculate that the generation rate of structural genomic variants may be altered by WGD in young polyploids, contributing to their occasionally spectacular adaptability observed across kingdoms.
Load More