SB
Simon Berry
Author with expertise in Genetic Diversity and Breeding of Wheat
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(33% Open Access)
Cited by:
1,518
h-index:
30
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Transcript‐specific, single‐nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.)

Alexandra Allen et al.Jun 1, 2011
Summary Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker‐assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single‐nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single‐nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next‐generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single‐nucleotide polymorphisms in hexaploid bread wheat using competitive allele‐specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross‐section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single‐nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza.
0
Citation241
0
Save
0

RNASeq bulked segregant analysis enables the identification of high‐resolution genetic markers for breeding in hexaploid wheat

Ricardo Ramírez-González et al.Nov 8, 2014
The identification of genetic markers linked to genes of agronomic importance is a major aim of crop research and breeding programmes. Here, we identify markers for Yr15, a major disease resistance gene for wheat yellow rust, using a segregating F2 population. After phenotyping, we implemented RNA sequencing (RNA-Seq) of bulked pools to identify single-nucleotide polymorphisms (SNP) associated with Yr15. Over 27 000 genes with SNPs were identified between the parents, and then classified based on the results from the sequenced bulks. We calculated the bulk frequency ratio (BFR) of SNPs between resistant and susceptible bulks, selecting those showing sixfold enrichment/depletion in the corresponding bulks (BFR > 6). Using additional filtering criteria, we reduced the number of genes with a putative SNP to 175. The 35 SNPs with the highest BFR values were converted into genome-specific KASP assays using an automated bioinformatics pipeline (PolyMarker) which circumvents the limitations associated with the polyploid wheat genome. Twenty-eight assays were polymorphic of which 22 (63%) mapped in the same linkage group as Yr15. Using these markers, we mapped Yr15 to a 0.77-cM interval. The three most closely linked SNPs were tested across varieties and breeding lines representing UK elite germplasm. Two flanking markers were diagnostic in over 99% of lines tested, thus providing a reliable haplotype for marker-assisted selection in these breeding programmes. Our results demonstrate that the proposed methodology can be applied in polyploid F2 populations to generate high-resolution genetic maps across target intervals.
0
Citation203
0
Save
0

Harnessing landrace diversity empowers wheat breeding

Shifeng Cheng et al.Jun 17, 2024
Abstract Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security 1 . Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection 2 of bread wheat ( Triticum aestivum ), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker–trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.
0
Citation5
0
Save
0

The effects of training population design on genomic prediction accuracy in wheat

Stefan Edwards et al.Oct 14, 2018
Genomic selection offers several routes for increasing genetic gain or efficiency of plant breeding programs. In various species of livestock there is empirical evidence of increased rates of genetic gain from the use of genomic selection to target different aspects of the breeders equation. Accurate predictions of genomic breeding value are central to this and the design of training sets is in turn central to achieving sufficient levels of accuracy. In summary, small numbers of close relatives and very large numbers of distant relatives are expected to enable accurate predictions. To quantify the effect of some of the properties of training sets on the accuracy of genomic selection in crops we performed an extensive field-based winter wheat trial. In summary, this trial involved the construction of 44 F2:4 biparental and triparental populations, from which 2992 lines were grown on four field locations and yield was measured. For each line, genotype data were generated for 25,000 segregating single nucleotide polymorphism markers. The overall heritability of yield was estimated to 0.65, and estimates within individual families ranged between 0.10 and 0.85. Within cross genomic prediction accuracies of yield BLUEs were 0.125 to 0.127 using two different cross-validation approaches, and generally increased with training set size. Using related crosses in training and validation sets generally resulted in higher prediction accuracies than using unrelated crosses. The results of this study emphasize the importance of the training set design in relation to the genetic material to which the resulting prediction model is to be applied.
0

BED-domain containing immune receptors confer diverse resistance spectra to yellow rust

Clémence Marchal et al.Apr 11, 2018
Crop diseases reduce wheat yields by ~25% globally and thus pose a major threat to global food security. Genetic resistance can reduce crop losses in the field and can be selected for through the use of molecular markers. However, genetic resistance often breaks down following changes in pathogen virulence, as experienced with the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (PST). This highlights the need to (i) identify genes that alone or in combination provide broad-spectrum resistance and (ii) increase our understanding of the underlying molecular mode of action. Here we report the isolation and characterisation of three major yellow rust resistance genes (Yr7, Yr5, and YrSP) from hexaploid wheat (Triticum aestivum), each having a distinct and unique recognition specificity. We show that Yr5, which remains effective to a broad range of PST isolates worldwide, is allelic to YrSP and paralogous to Yr7, both of which have been overcome by multiple PST isolates. All three Yr genes belong to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N-terminal zinc-finger BED domain that is distinct from those found in non-NLR wheat proteins. We developed and tested diagnostic markers to accelerate haplotype analysis and for marker-assisted selection to enable the stacking of the non-allelic Yr genes. Our results provide evidence that the BED-NLR gene architecture can provide effective field-based resistance to important fungal diseases such as wheat yellow rust.
0

Harnessing Landrace Diversity Empowers Wheat Breeding for Climate Resilience

Shifeng Cheng et al.Jan 1, 2023
Breeding crops resilient to climate change is urgently needed to help ensure food security. A key challenge is to harness genetic diversity to optimise adaptation, yield, stress resilience and nutrition. We examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat, leaving five groups as previously untapped sources for breeding. This provides access to landrace-specific functional variations using structured germplasm, genotyping and informatics resources. Employing complementary genetic populations and approaches, we identified thousands of high-resolution quantitative trait loci (QTL) and significant marker-trait associations for major traits, revealing many Watkins-unique loci that can confer superior traits in modern wheat. Furthermore, we identified and functionally verified causative genes for climate-change adaptation, nutritional enhancement and resistance to wheat blast. Finally, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.
0

Resolving a QTL complex for height, heading, and grain yield on chromosome 3A in bread wheat

Alba Martinez et al.Feb 14, 2020
Crop height (Ht), heading date (Hd), and grain yield (GY) are interrelated traits in wheat. Independent manipulation of each is important for adaptation and performance. Validated QTL for all three collocate on chromosome 3A in the Avalon x Cadenza population. We asked if these are linked or pleiotropic effects. The region was dissected using recombinants derived from Near Isogenic Lines. It was shown that Ht and Hd are controlled by independent genes. The newly defined Ht QTL interval contained a gene cluster involved in cell wall growth and displaying high levels of differential transcript expression. The Hd locus is much larger and rearranged compared to the refernce genome but FT2 is a candidate of particular interest. The Hd effect was shown to act independently of photoperiod and vernalization but did exhibit genotype x environment interaction suggesting a role in ambient temperature sensitivity. It was the Hd locus that was most associated with increased GY of Cadenza alleles, supporting physiological studies proposing that 'late' alleles at this locus increase spike fertility and grain number. The work has uncoupled height from heading and yield and shown that one of very few validated GY QTL in wheat is probably mediated by phenological variation.