YS
Yan Shi
Author with expertise in Genetic Diversity and Breeding of Wheat
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
215
h-index:
24
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Harnessing landrace diversity empowers wheat breeding

Shifeng Cheng et al.Jun 17, 2024
Abstract Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security 1 . Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection 2 of bread wheat ( Triticum aestivum ), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker–trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.
0
Citation5
0
Save
0

Harnessing Landrace Diversity Empowers Wheat Breeding for Climate Resilience

Shifeng Cheng et al.Jan 1, 2023
Breeding crops resilient to climate change is urgently needed to help ensure food security. A key challenge is to harness genetic diversity to optimise adaptation, yield, stress resilience and nutrition. We examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat, leaving five groups as previously untapped sources for breeding. This provides access to landrace-specific functional variations using structured germplasm, genotyping and informatics resources. Employing complementary genetic populations and approaches, we identified thousands of high-resolution quantitative trait loci (QTL) and significant marker-trait associations for major traits, revealing many Watkins-unique loci that can confer superior traits in modern wheat. Furthermore, we identified and functionally verified causative genes for climate-change adaptation, nutritional enhancement and resistance to wheat blast. Finally, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.
0

Genomic and Genetic Insights into Mendel's Pea Genes

Cong Feng et al.Jun 3, 2024
ABSTRACT Pea, Pisum sativum , is an excellent model system through which Gregor Mendel established the foundational principles of inheritance. Surprisingly, till today, the molecular nature of the genetic differences underlying the seven pairs of contrasting traits that Mendel studied in detail remains partially understood. Here, we present a genomic and phenotypic variation map, coupled with haplotype-phenotype association analyses across a wide range of traits in a global Pisum diversity panel. We focus on a genomics-enabled genetic dissection of each of the seven traits Mendel studied, revealing many previously undescribed alleles for the four characterized genes, R , Le , I and A , and elucidating the gene identities and mutations for the remaining three uncharacterized traits. Notably, we identify: (1) a ca. 100kb deletion upstream of the Chlorophyll synthase ( ChlG ) gene, which generates aberrant transcripts and confers the yellow pod phenotype of gp mutants; (2) an in-frame premature stop codon mutation in a Dodeca-CLE41/44 signalling peptide which explains the parchmentless mutant phenotype corresponding to p ; and (3) a 5bp in-frame deletion in a CIK-like receptor kinase gene corresponding to the fasciated stem phenotype fa , which Mendel described in terms of flower position, and we postulate the existence of a Modifier of fa ( Mfa ) locus that masks this meristem defect. Mendel noted the pleiotropy of the a mutation, including inhibition of axil ring anthocyanin pigmentation, a trait we found to be controlled by allelic variants of the gene D within an R2R3-MYB gene cluster. Furthermore, we characterize and validate natural variation of a quantitative genetic locus governing both pod width and seed weight, characters that Mendel deemed were not sufficiently demarcated for his analyses. This study establishes a cornerstone for fundamental research, education in biology and genetics, and pea breeding practices.