AR
Andreas Richter
Author with expertise in Marine Microbial Diversity and Biogeography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
43
(81% Open Access)
Cited by:
16,615
h-index:
94
/
i10-index:
236
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils

Stefano Manzoni et al.Jul 11, 2012
Summary Carbon (C) metabolism is at the core of ecosystem function. Decomposers play a critical role in this metabolism as they drive soil C cycle by mineralizing organic matter to CO 2 . Their growth depends on the carbon‐use efficiency (CUE), defined as the ratio of growth over C uptake. By definition, high CUE promotes growth and possibly C stabilization in soils, while low CUE favors respiration. Despite the importance of this variable, flexibility in CUE for terrestrial decomposers is still poorly characterized and is not represented in most biogeochemical models. Here, we synthesize the theoretical and empirical basis of changes in CUE across aquatic and terrestrial ecosystems, highlighting common patterns and hypothesizing changes in CUE under future climates. Both theoretical considerations and empirical evidence from aquatic organisms indicate that CUE decreases as temperature increases and nutrient availability decreases. More limited evidence shows a similar sensitivity of CUE to temperature and nutrient availability in terrestrial decomposers. Increasing CUE with improved nutrient availability might explain observed declines in respiration from fertilized stands, while decreased CUE with increasing temperature and plant C : N ratios might decrease soil C storage. Current biogeochemical models could be improved by accounting for these CUE responses along environmental and stoichiometric gradients.
0
Paper
Citation1,207
0
Save
0

ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation

Tatsuo Hashimoto et al.Jul 1, 2012
Mutations in angiotensin-converting enzyme 2 are shown to predispose mice to colitis as a consequence of neutral amino acid malabsorption and a change in the resident microbiota; these results could explain how protein malnutrition — affecting up to one billion people — leads to intestinal inflammation. Malnutrition affects many millions of people in the developing world and remains a problem in wealthy nations, especially for disadvantaged groups. In many cases, it is the associated diarrhoea and intestinal inflammation that cause morbidity and death. A study published in this issue presents a molecular explanation for the increased susceptibility to intestinal inflammation in malnutrition. Angiotensin converting enzyme 2 (ACE2), which has a central role in blood-pressure regulation and has been implicated in diabetes, heart failure and viral infection, is shown to influence dietary amino-acid homeostasis, innate immunity, gut microbial ecology and susceptibility to colitis. Mice deficient in this enzyme show impaired tryptophan metabolism and develop colitis, which is alleviated by dietary tryptophan and its metabolite, nicotinamide. This surprising result explains nutritional effects that have been known for centuries and provides a molecular link between malnutrition and the intestinal microbiome. Malnutrition affects up to one billion people in the world and is a major cause of mortality1,2. In many cases, malnutrition is associated with diarrhoea and intestinal inflammation, further contributing to morbidity and death2. The mechanisms by which unbalanced dietary nutrients affect intestinal homeostasis are largely unknown. Here we report that deficiency in murine angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (Ace2), which encodes a key regulatory enzyme of the renin-angiotensin system (RAS), results in highly increased susceptibility to intestinal inflammation induced by epithelial damage. The RAS is known to be involved in acute lung failure3, cardiovascular functions4 and SARS infections5. Mechanistically, ACE2 has a RAS-independent function, regulating intestinal amino acid homeostasis, expression of antimicrobial peptides, and the ecology of the gut microbiome. Transplantation of the altered microbiota from Ace2 mutant mice into germ-free wild-type hosts was able to transmit the increased propensity to develop severe colitis. ACE2-dependent changes in epithelial immunity and the gut microbiota can be directly regulated by the dietary amino acid tryptophan. Our results identify ACE2 as a key regulator of dietary amino acid homeostasis, innate immunity, gut microbial ecology, and transmissible susceptibility to colitis. These results provide a molecular explanation for how amino acid malnutrition can cause intestinal inflammation and diarrhoea.
0

The application of ecological stoichiometry to plant–microbial–soil organic matter transformations

Sophie Zechmeister‐Boltenstern et al.Apr 24, 2015
Elemental stoichiometry constitutes an inherent link between biogeochemistry and the structure and processes within food webs, and thus is at the core of ecosystem functioning. Stoichiometry allows for spanning different levels of biological organization, from cellular metabolism to ecosystem structure and nutrient cycling, and is therefore particularly useful for establishing links between different ecosystem compartments. We review elemental carbon : nitrogen : phosphorus (C:N:P) ratios in terrestrial ecosystems (from vegetation, leaf litter, woody debris, and dead roots, to soil microbes and organic matter). While the stoichiometry of the plant, litter, and soil compartments of ecosystems is well understood, heterotrophic microbial communities, which dominate the soil food web and drive nutrient cycling, have received increasing interest in recent years. This review highlights the effects of resource stoichiometry on soil microorganisms and decomposition, specifically on the structure and function of heterotrophic microbial communities and suggests several general patterns. First, latitudinal gradients of soil and litter stoichiometry are reflected in microbial community structure and function. Second, resource stoichiometry may cause changes in microbial interactions and community dynamics that lead to feedbacks in nutrient availability. Third, global change alters the C:N, C:P, and N:P ratios of primary producers, with repercussions for microbial decomposer communities and critical ecosystem services such as soil fertility. We argue that ecological stoichiometry provides a framework to analyze and predict such global change effects at various scales.
0
Paper
Citation858
0
Save
0

Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling

Robert Sinsabaugh et al.Apr 30, 2013
Abstract Carbon use efficiency ( CUE ) is a fundamental parameter for ecological models based on the physiology of microorganisms. CUE determines energy and material flows to higher trophic levels, conversion of plant‐produced carbon into microbial products and rates of ecosystem carbon storage. Thermodynamic calculations support a maximum CUE value of ~ 0.60 ( CUE max ). Kinetic and stoichiometric constraints on microbial growth suggest that CUE in multi‐resource limited natural systems should approach ~ 0.3 ( CUE max /2). However, the mean CUE values reported for aquatic and terrestrial ecosystems differ by twofold (~ 0.26 vs. ~ 0.55) because the methods used to estimate CUE in aquatic and terrestrial systems generally differ and soil estimates are less likely to capture the full maintenance costs of community metabolism given the difficulty of measurements in water‐limited environments. Moreover, many simulation models lack adequate representation of energy spilling pathways and stoichiometric constraints on metabolism, which can also lead to overestimates of CUE . We recommend that broad‐scale models use a CUE value of 0.30, unless there is evidence for lower values as a result of pervasive nutrient limitations. Ecosystem models operating at finer scales should consider resource composition, stoichiometric constraints and biomass composition, as well as environmental drivers, to predict the CUE of microbial communities.
0
Citation733
0
Save
0

Non‐structural carbon compounds in temperate forest trees

Günter Hoch et al.Jul 1, 2003
ABSTRACT The current carbon supply status of temperate forest trees was assessed by analysing the seasonal variation of non‐structural carbohydrate (NSC) concentrations in leaves, branch wood and stem sapwood of 10 tree species (six deciduous broad‐leafed, one deciduous conifer and three evergreen conifer trees) in a temperate forest that is approximately 100 years old. In addition, all woody tissue was analysed for lipids (acylglycerols). The major NSC fractions were starch, sucrose, glucose and fructose, with other carbohydrates (e.g. raffinose and stachyose) and sugar alcohols (cyclitols and sorbitol) playing only a minor quantitative role. The radial distribution of NSC within entire stem cores, assessed here for the first time in a direct interspecific comparison, revealed large differences in the size of the active sapwood fraction among the species, reflecting the specific wood anatomy (ring‐porous versus diffuse‐porous xylem). The mean minimum NSC concentrations in branch wood during the growing season was 55% of maximum, and even high NSC concentrations were maintained during times of extensive fruit production in masting Fagus sylvestris . The NSC in stem sapwood varied very little throughout the season (cross species mean never below 67% of maximum), and the small reductions observed were not significant for any of the investigated species. Although some species contained substantial quantities of lipids in woody tissues (‘fat trees’; Tilia , Pinus , Picea , Larix ), the lipid pools did not vary significantly across the growing season in any species. On average, the carbon stores of deciduous trees would permit to replace the whole leave canopy four times. These data imply that there is not a lot of leeway for a further stimulation of growth by ongoing atmospheric CO 2 enrichment. The classical view that deciduous trees rely more on C‐reserves than evergreen trees, seems unwarranted or has lost its justification due to the greater than 30% increase in atmospheric CO 2 concentrations over the last 150 years.
0

A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring

Roland Hatzenpichler et al.Feb 5, 2008
The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46°C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase ( amoA and amoB ) were detected via PCR, no hints for known ammonia-oxidizing bacteria were obtained. Comparative sequence analyses of these gene fragments demonstrated the presence of a single operational taxonomic unit and thus enabled the assignment of the amoA and amoB sequences to the respective 16S rRNA phylotype, which belongs to the widely distributed group I.1b (soil group) of the Crenarchaeota . Catalyzed reporter deposition (CARD)–FISH combined with microautoradiography (MAR) demonstrated metabolic activity of this archaeon in the presence of ammonium. This finding was corroborated by the detection of amoA gene transcripts in the enrichment. CARD-FISH/MAR showed that the moderately thermophilic AOA is highly active at 0.14 and 0.79 mM ammonium and is partially inhibited by a concentration of 3.08 mM. The enriched AOA, which is provisionally classified as “ Candidatus Nitrososphaera gargensis,” is the first described thermophilic ammonia oxidizer and the first member of the crenarchaeotal group I.1b for which ammonium oxidation has been verified on a cellular level. Its preference for thermophilic conditions reinvigorates the debate on the thermophilic ancestry of AOA.
0
Citation666
0
Save
0

Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions

Thomas Schneider et al.Mar 8, 2012
Abstract Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks’ in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes.
0
Citation596
0
Save
Load More