RK
Robyn Kosinsky
Author with expertise in Cellular Senescence and Aging-Related Diseases
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
327
h-index:
17
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
58

A New Gene Set Identifies Senescent Cells and Predicts Senescence-Associated Pathways Across Tissues

Dominik Saul et al.Dec 11, 2021
Abstract Although cellular senescence is increasingly recognized as driving multiple age-related co-morbidities through the senescence-associated secretory phenotype (SASP), in vivo senescent cell identification, particularly in bulk or single cell RNA-sequencing (scRNA-seq) data remains challenging. Here, we generated a novel gene set (SenMayo) and first validated its enrichment in bone biopsies from two aged human cohorts. SenMayo also identified senescent cells in aged murine brain tissue, demonstrating applicability across tissues and species. For direct validation, we demonstrated significant reductions in SenMayo in bone following genetic clearance of senescent cells in mice, with similar findings in adipose tissue from humans in a pilot study of pharmacological senescent cell clearance. In direct comparisons, SenMayo outperformed all six existing senescence/SASP gene sets in identifying senescent cells across tissues and in demonstrating responses to senescent cell clearance. We next used SenMayo to identify senescent hematopoietic or mesenchymal cells at the single cell level from publicly available human and murine bone marrow/bone scRNA-seq data and identified monocytic and osteolineage cells, respectively, as showing the highest levels of senescence/SASP genes. Using pseudotime and cellular communication patterns, we found senescent hematopoietic and mesenchymal cells communicated with other cells through common pathways, including the Macrophage Migration Inhibitory Factor (MIF) pathway, which has been implicated not only in inflammation but also in immune evasion, an important property of senescent cells. Thus, SenMayo identifies senescent cells across tissues and species with high fidelity. Moreover, using this senescence panel, we were able to characterize senescent cells at the single cell level and identify key intercellular signaling pathways associated with these cells, which may be particularly useful for evolving efforts to map senescent cells ( e.g ., SenNet). In addition, SenMayo represents a potentially clinically applicable panel for monitoring senescent cell burden with aging and other conditions as well as in studies of senolytic drugs.
58
Citation6
0
Save
0

Osteochondroprogenitor cells and neutrophils expressing p21 and senescence markers modulate fracture repair

Dominik Saul et al.Feb 7, 2024
Cells expressing features of senescence, including upregulation of p21 and p16, appear transiently following tissue injury, yet the properties of these cells or how they contrast with age-induced senescent cells remains unclear. Here, we used skeletal injury as a model and identified the rapid appearance following fracture of p21+ cells expressing senescence markers, mainly as osteochondroprogenitors (OCHs) and neutrophils. Targeted genetic clearance of p21+ cells suppressed senescence-associated signatures within the fracture callus and accelerated fracture healing. By contrast, p21+ cell clearance did not alter bone loss due to aging; conversely, p16+ cell clearance, known to alleviate skeletal aging, did not affect fracture healing. Following fracture, p21+ neutrophils were enriched in signaling pathways known to induce paracrine stromal senescence, while p21+ OCHs were highly enriched in senescence-associated secretory phenotype factors known to impair bone formation. Further analysis revealed an injury-specific stem cell-like OCH subset that was p21+ and highly inflammatory, with a similar inflammatory mesenchymal population (fibro-adipogenic progenitors) evident following muscle injury. Thus, intercommunicating senescent-like neutrophils and mesenchymal progenitor cells are key regulators of tissue repair in bone and potentially across tissues. Moreover, our findings establish contextual roles of p21+
0
Citation1
0
Save
3

Evolutionary analysis reveals the role of a non-catalytic domain of peptidyl arginine deiminase 2 in transcriptional regulation

José Villanueva‐Cañas et al.Sep 19, 2022
Abstract Peptidyl arginine deiminases (PADIs) catalyze protein citrullination, a post-translational conversion of arginine to citrulline. The most widely expressed member of this family, PADI2, regulates cellular processes that impact several diseases. We hypothesized that we could gain new insights into PADI2 function through a systematic evolutionary and structural analysis. Here, we identify 20 positively selected PADI2 residues, 16 of which are structurally exposed and maintain PADI2 interactions with cognate proteins. Many of these selected residues reside in non-catalytic regions of PADI2. We validate the importance of a prominent loop in the middle domain that encompasses PADI2 L162, a residue under positive selection. This site is essential for interaction with the transcription elongation factor (P-TEFb) and mediates active transcription of the oncogenes c-MYC , and CCNB1, as well as impacting cellular proliferation. These insights could be key to understanding and addressing the role of the PADI2 c-MYC axis in cancer progression. Significance Statement Here we use a systematic evolutionary analysis to identify positively selected residues in the non-catalytic domain of PADI2 and link the positive selection of key residues to a role in transcription. Specifically, a structurally exposed loop in the PADI2 middle domain encompasses the positively selected residue L162 which is linked to transcription and cellular proliferation. This loop contributes to PADI2 interaction with the P-TEFb complex and cellular proliferation. Our results showcase the utility of combining evolutionary and experimental approaches to dissect the evolution of essential functional processes.
3
Citation1
0
Save
5

Modulation of fracture healing by the transient accumulation of senescent cells

Dominik Saul et al.May 19, 2021
Abstract Senescent cells have detrimental effects across tissues with aging but may have beneficial effects on tissue repair, specifically on skin wound healing. However, the potential role of senescent cells in fracture healing has not been defined. Here, we performed an in silico analysis of public mRNAseq data and found that senescence and senescence-associated secretory phenotype (SASP) markers increased during fracture healing. We next directly established that the expression of senescence biomarkers increased markedly during murine fracture healing. We also identified a subset of cells in the fracture callus that displayed hallmarks of senescence, including distension of satellite heterochromatin and telomeric DNA damage. Then, using a genetic mouse model ( p16 LUC ) containing a pl6 Ink4a -dnven luciferase reporter, we demonstrated transient in vivo senescent cell accumulation during callus formation. Finally, we intermittently treated young adult mice following fracture with drugs that selectively eliminate senescent cells (“senolytics”, Dasatinib plus Quercetin), and showed that this regimen both decreased senescence and SASP markers in the fracture callus and significantly accelerated the time course of fracture healing. Our findings thus demonstrate that senescent cells accumulate transiently in the murine fracture callus and, in contrast to the skin, their clearance does not impair but rather may improve fracture healing.
5
Citation1
0
Save
0