OT
Olivier Théodoly
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
6
h-index:
27
/
i10-index:
40
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Different integrins mediate haptotaxis of T lymphocytes towards either lower or higher adhesion zones

Xuan Luo et al.Jan 2, 2019
ABSTRACT Guidance of cells by molecules anchored on a substrate, known as haptotaxis, is arguably crucial in development, immunology and cancer, however the exact cues and mechanisms driving cell orientation in vivo are hardly identified. Adhesive haptotaxis has been described in the case of mesenchymatous cells that develop strong pulling forces with their substrates and orient via a tug of war mechanism – a competition between cells’ pulling edges. In the case of amoeboid cells that migrate with minimal interaction with their substrate, existence of adhesive haptotaxis remains unclear. Here, we studied the crawling of human T lymphocytes on substrates with spatially modulated adhesivity, and observed haptotaxis with surface concentrations of integrin ligands found on high endothelial veinules. Overexpression of ICAM-1 and VCAM-1 molecules observed in vivo at transmigration portals can therefore promote leukocyte recruitment. Mechanistically, we show that integrin-mediated haptotaxis of lymphocytes differ both from active chemotaxis, because no mechanotransduction was detected, and from the passive tug of war mechanism of mesenchymatous cells, because different integrins support opposite phenotypes. Cells favored more adherent zones with VLA-4 and, counterintuitively, less adherent zones with LFA-1. These results reveal that integrins control differential adhesive haptotaxis behaviors without mechanotransduction, and this smart capability may support unsuspected ways for cells path selection.
0
Citation3
0
Save
1

Tension-driven multi-scale self-organisation in human iPSC-derived muscle fibers

Qiyan Mao et al.Oct 25, 2021
Abstract Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. By directly probing tension we found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro . A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.
1
Citation2
0
Save
19

Controlling T cells shape, mechanics and activation by micropatterning

Anaïs Sadoun et al.Sep 15, 2020
Abstract We designed a strategy, based on a careful examination of the activation capabilities of proteins and antibodies used as substrates for adhering T cells, coupled to protein microstamping. This allowed us to control at the same time the position, shape, mechanics and activation state of T cells. Once adhered on shaped patterns we examined the capacities of T cells to be activated with soluble aCD3, in comparison to T cells adhered to a continuously decorated substrate with the same density of ligands. We show that, in our hand, adhering onto an anti CD45 (aCD45) antibody decorated surface is not affecting T cell calcium fluxes, even adhered on variable size micro-patterns. We further demonstrate this by expressing MEGF10 as a non immune adhesion receptor in T cells to obtain the very same spreading area on PLL substrates and Young modulus than immobilized cells on aCD45, while retaining similar activation capabilities using soluble aCD3 or through model APC contacts. We propose that our system is a way to test activation or anergy of T cells with defined adhesion and mechanical characteristics, and may allow to dissect fine details of these mechanisms since it allows to observe homogenised populations in standardized T cell activation assays.
19
Citation1
0
Save
5

Integrin-like adhesin CglD confers traction and stabilizes bacterial focal adhesions involved in myxobacterial gliding motility

Nicolas Jolivet et al.Jan 1, 2023
Integrins are crucial for eukaryotic cell attachment and motility within the extracellular matrix (ECM) via focal-adhesion formation, with their evolutionary emergence important for the development of multicellularity. Intriguingly, single gliding cells of the predatory deltaproteobacterium Myxococcus xanthus form bacterial focal-adhesion (bFA) sites; therein, helically-trafficked motors become immobilized at anchored locations through Glt apparatus association with cell-surface integrin αI-domain-like adhesin CglB. Using traction-force, bead-force, and total internal reflection-fluorescence microscopies combined with biochemical approaches, we herein identify the von Willebrand A domain-containing cell-surface lipoprotein CglD to be a β-integrin-like outer-membrane lipoprotein that functionally associates with and anchors the trans-envelope Glt-CglB gliding apparatus, stabilizing and efficiently anchoring this assembly at bFAs. Calcium dependence governs CglD importance, consistent with its integrated ECM eukaryotic cartilage oligomeric matrix protein domains. CglD thus confers mechanosensory and mechanotransductory capabilities to the gliding apparatus, helping explain bFA-mediated trans-envelope force transduction, from inner-membrane-embedded motors to the cell surface.
0

Mammalian Amoeboid Swimming is propelled by molecular and not protrusion-based paddling in Lymphocytes

Laurène Aoun et al.Jan 2, 2019
Mammalian cells developed two main migration modes. The slow mesenchymatous mode, like fibroblasts crawling, relies on maturation of adhesion complexes and actin fiber traction, while the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on 2D and in 3D solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming. We show here experimentally and computationally that leukocytes do swim, and that propulsion is not fueled by waves of cell deformation but by a rearward and inhomogeneous treadmilling of the cell envelope. We model the propulsion as a molecular paddling by transmembrane proteins linked to and advected by the actin cortex, whereas freely diffusing transmembrane proteins hinder swimming. This mechanism explains that swimming is five times slower than the cortex retrograde flow. Resultantly the ubiquitous ability of mammalian amoeboid cells to migrate in various environments can be explained for lymphocytes by a single machinery of envelope treadmilling.