AP
Anthony Poole
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
375
h-index:
34
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

Bruce Curtis et al.Nov 27, 2012
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote–eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph. Sequencing the nuclear genomes of Guillardia theta and Bigelowiella natans, transitional forms in the endosymbiotic acquisition of photosynthesis by engulfment of certain eukaryotic algae, reveals unprecedented alternative splicing for a single-celled organism (B. natans) and extensive genetic and biochemical mosaicism, shedding light on why nucleomorphs persist in these species but not other algae. This paper presents the sequences of the nuclear genomes of two eukaryotic microbes of remarkable genetic and cellular complexity, Guillardia and Bigelowiella. These algae are transitional forms in the endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae, and possess four genomes: mitochondrial and plastid (chloroplast) genomes, a nuclear genome of host origin and a miniaturized 'nucleomorph' genome of endosymbiotic origin. Analyses reveal unprecedented alternative splicing for a single-celled organism, and extensive genetic and biochemical mosaicism. Whereas the mitochondrion-to-nucleus gene transfer continues in both organisms, plastid-to-nucleus and nucleomorph-to-nucleus transfers have ceased, explaining nucleomorph persistence.
0
Citation373
0
Save
0

Nuclear pore-like structures in a compartmentalized bacterium

Evgeny Sagulenko et al.Sep 21, 2016
ABSTRACT Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immuno-gold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.
0
Citation1
0
Save
0

Structome: Exploring the structural neighbourhood of proteins

Ashar Malik et al.Feb 21, 2023
Abstract Protein structures carry signal of common ancestry and can therefore aid in reconstructing their evolutionary histories. To expedite the structure-informed inference process, a web server, Structome, has been developed, that allows users to rapidly identify protein structures similar to a query protein and to assemble datasets useful for structure-based phylogenetics. Structome was created by clustering ∼ 94% of the structures in RCSB PDB using 90% sequence identity and representing each cluster by a centroid structure. Structure similarity between centroid proteins was calculated, and annotations from PDB, SCOP and CATH were integrated. To illustrate utility, an H3 histone was used as a query, and results show that the protein structures returned by Structome span both sequence and structural diversity of the histone fold. Additionally, the pre-computed nexus-formated distance matrix, provided by Structome, enables analysis of evolutionary relationships between proteins not identifiable using searches based on sequence similarity alone. Our results demonstrate that, beginning with a single structure, Structome can be used to rapidly generate a dataset of structural neighbours and allows deep evolutionary history of proteins to be studied. Structome is available at: https://structome.bii.a-star.edu.sg
0
Citation1
0
Save
0

Tertiary-interaction characters enable fast, model-based structural phylogenetics beyond the twilight zone

Caroline Puente-Lelièvre et al.Jan 1, 2023
Protein structure is more conserved than protein sequence, and therefore may be useful for phylogenetic inference beyond the "twilight zone" where sequence similarity is highly decayed. Until recently, structural phylogenetics was constrained by the lack of solved structures for most proteins, and the reliance on phylogenetic distance methods which made it difficult to treat inference and uncertainty statistically. AlphaFold has mostly overcome the first problem by making structural predictions readily available. We address the second problem by redeploying a structural alphabet recently developed for Foldseek, a highly-efficient deep homology search program. For each residue in a structure, Foldseek identifies a tertiary interaction closest-neighbor residue in the structure, and classifies it into one of twenty "3Di" states. We test the hypothesis that 3Dis can be used as standard phylogenetic characters using a dataset of 53 structures from the ferritin-like superfamily. We performed 60 IQtree Maximum Likelihood runs to compare structure-free, PDB, and AlphaFold analyses, and default versus custom model sets that include a 3DI-specific rate matrix. Analyses that combine amino acids, 3Di characters, partitioning, and custom models produce the closest match to the structural distances tree of Malik et al. (2020), avoiding the long-branch attraction errors of structure-free analyses. Analyses include standard ultrafast bootstrapping confidence measures, and take minutes instead of weeks to run on desktop computers. These results suggest that structural phylogenetics could soon be routine practice in protein phylogenetics, allowing the re-exploration of many fundamental phylogenetic problems.
16

Characterisation of an Escherichia coli line that completely lacks ribonucleotide reduction yields insights into the evolution of obligate intracellularity

Samantha Arras et al.Sep 30, 2022
Abstract All life requires ribonucleotide reduction for de novo synthesis of deoxyribonucleotides. A handful of obligate intracellular species are known to lack ribonucleotide reduction and are instead dependent on their host for deoxyribonucleotide synthesis. As ribonucleotide reduction has on occasion been lost in obligate intracellular parasites and endosymbionts, we reasoned that it should in principle be possible to knock this process out entirely under conditions where deoxyribonucleotides are present in the growth media. We report here the creation of a strain of E. coli where all three ribonucleotide reductase operons have been fully deleted. Our strain is able to grow in the presence of deoxyribonucleosides and shows slowed but substantial growth. Under limiting deoxyribonucleoside levels, we observe a distinctive filamentous cell morphology, where cells grow but do not appear to divide regularly. Finally, we examined whether our lines are able to adapt to limited supplies of deoxyribonucleosides, as might occur in the evolutionary switch from de novo synthesis to dependence on host production during the evolution of parasitism or endosymbiosis. Over the course of an evolution experiment, we observe a 25-fold reduction in the minimum concentration of exogenous deoxyribonucleosides necessary for growth. Genome analysis of replicate lines reveals that several lines carry mutations in deoB and cdd. deoB codes for phosphopentomutase, a key part of the deoxyriboaldolase pathway, which has been hypothesised as an alternative to ribonucleotide reduction for deoxyribonucleotide synthesis. Rather than synthesis via this pathway complementing the loss of ribonucleotide reduction, our experiments reveal that mutations appear that reduce or eliminate the capacity for this pathway to catabolise deoxyribonucleotides, thus preventing their loss via central metabolism. Mutational inactivation of both deoB and cdd is also observed in a number of obligate intracellular bacteria that have lost ribonucleotide reduction. We conclude that our experiments recapitulate key evolutionary steps in the adaptation to intracellular life without ribonucleotide reduction.
16
0
Save