EZ
En Zhu
Author with expertise in Face Recognition and Dimensionality Reduction Techniques
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(31% Open Access)
Cited by:
690
h-index:
42
/
i10-index:
116
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multiple Kernel k-means with Incomplete Kernels

Xinwang Liu et al.Jan 1, 2019
Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernel matrices to improve clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of base kernel matrices are absent. This paper proposes two simple yet effective algorithms to address this issue. Different from existing approaches where incomplete kernel matrices are first imputed and a standard MKC algorithm is applied to the imputed kernel matrices, our first algorithm integrates imputation and clustering into a unified learning procedure. Specifically, we perform multiple kernel clustering directly with the presence of incomplete kernel matrices, which are treated as auxiliary variables to be jointly optimized. Our algorithm does not require that there be at least one complete base kernel matrix over all the samples. Also, it adaptively imputes incomplete kernel matrices and combines them to best serve clustering. Moreover, we further improve this algorithm by encouraging these incomplete kernel matrices to mutually complete each other. The three-step iterative algorithm is designed to solve the resultant optimization problems. After that, we theoretically study the generalization bound of the proposed algorithms. Extensive experiments are conducted on 13 benchmark data sets to compare the proposed algorithms with existing imputation-based methods. Our algorithms consistently achieve superior performance and the improvement becomes more significant with increasing missing ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering.
0

Fast Parameter-Free Multi-View Subspace Clustering With Consensus Anchor Guidance

Siwei Wang et al.Dec 10, 2021
Multi-view subspace clustering has attracted intensive attention to effectively fuse multi-view information by exploring appropriate graph structures. Although existing works have made impressive progress in clustering performance, most of them suffer from the cubic time complexity which could prevent them from being efficiently applied into large-scale applications. To improve the efficiency, anchor sampling mechanism has been proposed to select vital landmarks to represent the whole data. However, existing anchor selecting usually follows the heuristic sampling strategy, e.g. k -means or uniform sampling. As a result, the procedures of anchor selecting and subsequent subspace graph construction are separated from each other which may adversely affect clustering performance. Moreover, the involved hyper-parameters further limit the application of traditional algorithms. To address these issues, we propose a novel subspace clustering method termed Fast Parameter-free Multi-view Subspace Clustering with Consensus Anchor Guidance (FPMVS-CAG). Firstly, we jointly conduct anchor selection and subspace graph construction into a unified optimization formulation. By this way, the two processes can be negotiated with each other to promote clustering quality. Moreover, our proposed FPMVS-CAG is proved to have linear time complexity with respect to the sample number. In addition, FPMVS-CAG can automatically learn an optimal anchor subspace graph without any extra hyper-parameters. Extensive experimental results on various benchmark datasets demonstrate the effectiveness and efficiency of the proposed method against the existing state-of-the-art multi-view subspace clustering competitors. These merits make FPMVS-CAG more suitable for large-scale subspace clustering. The code of FPMVS-CAG is publicly available at https://github.com/wangsiwei2010/FPMVS-CAG.
0

Efficient and Effective Regularized Incomplete Multi-view Clustering

Xinwang Liu et al.Jan 1, 2020
Incomplete multi-view clustering (IMVC) optimally combines multiple pre-specified incomplete views to improve clustering performance. Among various excellent solutions, the recently proposed multiple kernel k-means with incomplete kernels (MKKM-IK) forms a benchmark, which redefines IMVC as a joint optimization problem where the clustering and kernel matrix imputation tasks are alternately performed until convergence. Though demonstrating promising performance in various applications, we observe that the manner of kernel matrix imputation in MKKM-IK would incur intensive computational and storage complexities, over-complicated optimization and limitedly improved clustering performance. In this paper, we first propose an Efficient and Effective Incomplete Multi-view Clustering (EE-IMVC) algorithm to address these issues. Instead of completing the incomplete kernel matrices, EE-IMVC proposes to impute each incomplete base matrix generated by incomplete views with a learned consensus clustering matrix. Moreover, we further improve this algorithm by incorporating prior knowledge to regularize the learned consensus clustering matrix. Two three-step iterative algorithms are carefully developed to solve the resultant optimization problems with linear computational complexity, and their convergence is theoretically proven. After that, we theoretically study the generalization bound of the proposed algorithms. Furthermore, we conduct comprehensive experiments to study the proposed algorithms in terms of clustering accuracy, evolution of the learned consensus clustering matrix and the convergence. As indicated, our algorithms deliver their effectiveness by significantly and consistently outperforming some state-of-the-art ones.
0

Scalable and Structural Multi-view Graph Clustering with Adaptive Anchor Fusion

Siwei Wang et al.Jan 1, 2024
Anchor graph has been recently proposed to accelerate multi-view graph clustering and widely applied in various large-scale applications. Different from capturing full instance relationships, these methods choose small portion anchors among each view, construct single-view anchor graphs and combine them into the unified graph. Despite its efficiency, we observe that: (i) Existing mechanism adopts a separable two-step procedure-anchor graph construction and individual graph fusion, which may degrade the clustering performance. (ii)These methods determine the number of selected anchors to be equal among all the views, which may destruct the data distribution diversity. A more flexible multi-view anchor graph fusion framework with diverse magnitudes is desired to enhance the representation ability. (iii) During the latter fusion process, current anchor graph fusion framework follows simple linearly-combined style while the intrinsic clustering structures are ignored. To address these issues, we propose a novel scalable and flexible anchor graph fusion framework for multi-view graph clustering method in this paper. Specially, the anchor graph construction and graph alignment are jointly optimized in our unified framework to boost clustering quality. Moreover, we present a novel structural alignment regularization to adaptively fuse multiple anchor graphs with different magnitudes. In addition, our proposed method inherits the linear complexity of existing anchor strategies respecting to the sample number, which is time-economical for large-scale data. Experiments conducted on various benchmark datasets demonstrate the superiority and effectiveness of the newly proposed anchor graph fusion framework against the existing state-of-the-arts over the clustering performance promotion and time expenditure. Our code is publicly available at https://github.com/wangsiwei2010/SMVAGC-SF.
0
Citation1
0
Save
Load More