ES
Elena Splendiani
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
9
h-index:
6
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Open-ST: High-resolution spatial transcriptomics in 3D

M. Schott et al.Jun 1, 2024
+13
E
D
M
Spatial transcriptomics (ST) methods unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 2D and 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary head-and-neck tumors and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal, and tumor populations in space, validated by imaging-based ST. Distinct cell states were organized around cell-cell communication hotspots in the tumor but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. All protocols and software are available at https://rajewsky-lab.github.io/openst.
0
Citation5
0
Save
6

Open-ST: High-resolution spatial transcriptomics in 3D

M. Schott et al.Dec 23, 2023
+15
E
D
M
Abstract Spatial transcriptomics (ST) methods have been developed to unlock molecular mechanisms underlying tissue development, homeostasis, or disease. However, there is a need for easy-to-use, high-resolution, cost-efficient, and 3D-scalable methods. Here, we report Open-ST, a sequencing-based, open-source experimental and computational resource to address these challenges and to study the molecular organization of tissues in 3D. In mouse brain, Open-ST captured transcripts at subcellular resolution and reconstructed cell types. In primary tumor and patient-matched healthy/metastatic lymph nodes, Open-ST captured the diversity of immune, stromal and tumor populations in space. Distinct cell states were organized around cell-cell communication hotspots in the tumor, but not the metastasis. Strikingly, the 3D reconstruction and multimodal analysis of the metastatic lymph node revealed spatially contiguous structures not visible in 2D and potential biomarkers precisely at the 3D tumor/lymph node boundary. We anticipate Open-ST to accelerate the identification of spatial molecular mechanisms in 2D and 3D.