CH
Courtney Haswell
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(67% Open Access)
Cited by:
1,066
h-index:
24
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Amygdala Volume Changes in Posttraumatic Stress Disorder in a Large Case-Controlled Veterans Group

Rajendra Morey et al.Nov 1, 2012
Context: Smaller hippocampal volumes are well established in posttraumatic stress disorder (PTSD), but the relatively few studies of amygdala volume in PTSD have produced equivocal results.Objective: To assess a large cohort of recent military veterans with PTSD and trauma-exposed control subjects, with sufficient power to perform a definitive assessment of the effect of PTSD on volumetric changes in the amygdala and hippocampus and of the contribution of illness duration, trauma load, and depressive symptoms.Design: Case-controlled design with structural magnetic resonance imaging and clinical diagnostic assessments.We controlled statistically for the important potential confounds of alcohol use, depression, and medication use.Setting: Durham Veterans Affairs Medical Center, which is located in proximity to major military bases.Patients: Ambulatory patients (n=200) recruited from a registry of military service members and veterans serving after September 11, 2001, including a group with current PTSD (n = 99) and a trauma-exposed comparison group without PTSD (n = 101).Main Outcome Measure: Amygdala and hippocampal volumes computed from automated segmentation of high-resolution structural 3-T magnetic resonance imaging.Results: Smaller volume was demonstrated in the PTSD group compared with the non-PTSD group for the left amygdala (P=.002), right amygdala (P=.01), and left hippocampus (P = .02)but not for the right hippocampus (P = .25).Amygdala volumes were not associated with PTSD chronicity, trauma load, or severity of depressive symptoms.Conclusions: These results provide clear evidence of an association between a smaller amygdala volume and PTSD.The lack of correlation between trauma load or illness chronicity and amygdala volume suggests that a smaller amygdala represents a vulnerability to developing PTSD or the lack of a dose-response relationship with amygdala volume.Our results may trigger a renewed impetus for investigating structural differences in the amygdala, its genetic determinants, its environmental modulators, and the possibility that it reflects an intrinsic vulnerability to PTSD.
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
72

ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data

Lea Waller et al.May 9, 2021
Abstract The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe ( H armonized A na L ysis of F unctional MRI p i p e line), an open-source, containerized, user-friendly tool that facilitates reproducible analysis of task-based and resting-state fMRI data through uniform application of preprocessing, quality assessment, single-subject feature extraction, and group-level statistics. It provides state-of-the-art preprocessing using fMRIPrep without the requirement for input data in Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand mean scaling, temporal filtering, and confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to assess the quality of key preprocessing outputs and raw data in general. HALFpipe features myriad post-processing functions at the individual subject level, including calculation of task-based activation, seed-based connectivity, network-template (or dual) regression, atlas-based functional connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low frequency fluctuations (fALFF), offering support to evaluate a combinatorial number of features or preprocessing settings in one run. Finally, flexible factorial models can be defined for mixed-effects regression analysis at the group level, including multiple comparison correction. Here, we introduce the theoretical framework in which HALFpipe was developed, and present an overview of the main functions of the pipeline. HALFpipe offers the scientific community a major advance toward addressing the reproducibility crisis in neuroimaging, providing a workflow that encompasses preprocessing, post-processing, and QA of fMRI data, while broadening core principles of data analysis for producing reproducible results. Instructions and code can be found at https://github.com/HALFpipe/HALFpipe .
23

A Comparison of Methods to Harmonize Cortical Thickness Measurements Across Scanners and Sites

Delin Sun et al.Sep 24, 2021
Abstract Results of neuroimaging datasets aggregated from multiple sites may be biased by site- specific profiles in participants’ demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LME INT ), (2) LME that models both site-specific random intercepts and age-related random slopes (LME INT+SLP ), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,343 cases with posttraumatic stress disorder (PTSD) (6.2-81.8 years old) and 2,067 trauma-exposed controls without PTSD (6.3-85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM were more sensitive to the detection of significant case-control differences in regional cortical thickness ( X 2 (3) = 34.339, p < 0.001), and case-control differences in age-related cortical thinning ( X 2 (3) = 15.128, p = 0.002). Specifically, ComBat-GAM led to larger effect size estimates of cortical thickness reductions (corrected p-values < 0.001 ), smaller age-appropriate declines (corrected p-values < 0.001 ), and lower female to male contrast (corrected p-values < 0.001 ) in cases compared to controls relative to other harmonization methods. Harmonization with ComBat-GAM also led to greater estimates of age-related declines in cortical thickness (corrected p-values < 0.001 ) in both cases and controls compared to other harmonization methods. Our results support the use of ComBat-GAM for harmonizing cortical thickness data aggregated from multiple sites and scanners to minimize confounds and increase statistical power.
0

ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain

Yann Quidé et al.Jul 26, 2024
Chronic pain has a profound societal burden, affecting 20% to 30% of the world population,10,13,14,47 and is associated with high rates of comorbid mental health conditions, especially depression and anxiety.15 Women and people of increasing age are disproportionately affected by chronic pain,14,32 and while there are pharmacological and nonpharmacological treatments available, many individuals still do not benefit from these treatments.11,16,19,31,35,45 One significant challenge in providing effective pain-relieving treatments arises from our incomplete understanding of the mechanisms underlying the development and maintenance of chronic pain. Some of these mechanisms include changes in brain morphology and function.2,8,12,18,25,28,37 One approach to better understand these mechanisms is to combine neuroimaging studies of diverse populations with the purpose of identifying common phenotypes and neuroimaging correlates. Phenotyping to explore both similarities and heterogeneity across pain conditions is necessary to inform disease prognosis and elucidate common treatment targets. To this endeavor, the Enhancing Neuroimaging and Genetics through Meta-Analysis (ENIGMA)-Chronic Pain working group was formed in November 2022. ENIGMA-Chronic Pain has since welcomed over 70 pain investigators from all over the world, to pool and integrate existing neuroimaging and clinical data from approximately 2000 chronic pain and 4000 pain-free healthy individuals, from over 30 international and independently collected datasets. 1. What is ENIGMA? What are the aims of the ENIGMA-Chronic Pain Working Group? Founded in 2009, the aim of the ENIGMA Consortium is to address the growing replication problems in neuroimaging research. ENIGMA is a global collaboration of more than 2000 scientists from over 45 countries studying the human brain, in health and over 30 neurological, mental, and neurogenetic diseases.42 ENIGMA coordinates large-scale neuroimaging analyses, pooling existing datasets from around the world,6,34,39 actively coordinating the reuse of data, while accommodating data privacy safeguards, bringing rich resources and expertise to answer fundamental questions related to major brain disorders. By integrating available existing datasets and building on the growing infrastructure of the ENIGMA consortium, ENIGMA-Chronic Pain provides a platform and a resource to the chronic pain community allowing for data findability, accessibility, interoperability, and44 reusability—all vital aspects of reproducible research. Using a cost-effective and innovative global approach by merging the resources and data of leading chronic pain neuroimaging centers, ENIGMA-Chronic Pain offers a unique opportunity to obtain detailed, reproducible, and reliable data on brain mechanisms associated with chronic pain. ENIGMA-Chronic Pain integrates single studies of specific chronic pain conditions, including precursor data repositories (eg, OpenPain), and larger population-based biobanks with recorded indices of chronic pain (eg, UK Biobank).8 Recent advances in machine learning and artificial intelligence technologies also offer new and powerful ways to analyze these existing neuroimaging data. Through a worldwide collaboration of pain researchers and clinicians, ENIGMA-Chronic Pain will aim to (1) determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging (relative to pain-free healthy controls); (2) examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function; and (3) identify the roles of key sociodemographic factors and medication on brain morphology and function. 2. Determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging ENIGMA-Chronic Pain combines smaller datasets from heterogeneous chronic pain conditions. This approach maximizes the power of planned analyses and is necessary to identify brain correlates shared across chronic pain conditions. Through planned follow-up analyses on pooled datasets of similar pain types, pain locations across the body, or specific diagnoses, ENIGMA-Chronic Pain will identify correlates specific to the studied conditions at a larger scale than has previously been possible. ENIGMA-Chronic Pain will begin with examining brain topography of chronic pain by using common processing pipelines and software such as FreeSurfer for T1-weighted structural magnetic resonance imaging scans (sMRI)17,20,21 or Functional MRI of the Brain Software Library (FSL) for diffusion MRI (dMRI).23,38 Further to brain-wide region-of-interest analyses, investigation of multimodal correlates and brain networks of chronic pain will be conducted using whole-brain analyses, including standardized indices of functional connectivity from resting-state functional MRI (rs-fMRI) processed with ENIGMA's HALFpipe,43 voxel-based morphometry, and machine learning approaches to fuse multimodal features from sMRI, dMRI, and rs-fMRI to make diagnostic classification or prediction of a future clinical state. 3. Examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function Chronic pain is often accompanied by comorbid mental health conditions that can prevent treatment success.46 For example, 5% to 85% of individuals with chronic pain (depending on the study populations and settings) experience depression.1,9 The ENIGMA Consortium has extensively investigated the detailed brain and genetic markers of most common mental health conditions and reported alterations in brain regions similar to those commonly reported in smaller chronic pain studies.4,36 Evidence for shared or specific brain mechanisms between chronic pain and depression and anxiety is now growing,33,40,49,50 but no definite conclusion can be drawn from these smaller studies. Using advanced statistical models, our unique sample size, and availability of indices of comorbid mental health conditions, the pooled dataset from ENIGMA-Chronic Pain will aim to disentangle the fine morphological and functional brain alterations across all pain conditions, but also within specific pain types. This approach will contribute to identify plausible targets for more effective treatments for people living with both chronic pain and these comorbid conditions. 4. Examine the roles of key sociodemographic factors and medication on brain morphology and function Sex and age are key factors that can influence the transition to chronic pain.48 Women have greater prevalence rates for chronic pain conditions compared with men and experience more frequent, intense, and longer-lasting pain across the lifespan.14,24,30 These sex-specific differences can affect treatment choice, side effect profiles, and therapeutic responses.3 Although incompletely understood, many processes including genetic,29 neuroendocrine/neuroimmune,26 or brain-based differences,22 contribute to sex differences observed in chronic pain. Chronic pain is also highly prevalent in people of increasing age,14 along with other age-related pathologies, but the relationship between increasing age and chronic pain on brain morphology and function is still to be clearly determined. The inclusion of studies with comorbidity information that may inform causal modeling (eg, traumatic injuries, repetitive stress injuries, osteoporosis, metabolic disorders like diabetes, etc.) will clarify some of the brain–body connections at play. Existing preliminary evidence for the influence of these key sociodemographic factors needs further replication and refinement using large datasets. Another critical factor impacting brain morphology and function in chronic pain is the use of various types of pharmacological treatments,27 including tricyclic antidepressants, serotonin–norepinephrine reuptake inhibitors, antiepileptics, nonsteroidal anti-inflammatory drugs, and benzodiazepines.11,35 Using the available and detailed medication information recorded within ENIGMA-Chronic Pain, the aim of this study is to determine the variations in brain morphology and function associated with specific pharmacological treatment categories or combinations of thereof. 5. ENIGMA-Chronic Pain: expanding to other imaging modalities ENIGMA-Chronic Pain builds on the experience of the Consortium to host the largest and most comprehensive dataset for neuroimaging studies of chronic pain. In addition to sMRI, dMRI, and rs-fMRI data, ENIGMA-Chronic Pain will leverage the contribution of chronic pain researchers and clinicians with data and expertise in other neuroimaging modalities, including resting-state electroencephalography (EEG), task-based fMRI and EEG, event-related potentials, magnetoencephalography, functional near-infrared spectroscopy, and magnetic resonance spectroscopy. In addition, the aim of ENIGMA-Chronic Pain is to include neuromodulation studies, such as repetitive transcranial magnetic resonance stimulation, TMS-EEG, transcranial direct current stimulation, or transcranial alternating current stimulation studies, to examine potential causal associations.7 Finally, following work from the ENIGMA-Clinical Endpoint working group,41 a long-term goal includes building a framework of standardized questionnaires and tools for future research, to be applied to most, if not all, chronic pain conditions and to integrate genetics data to better understand the relationship between genetic and environmental risks on brain phenotypes of chronic pain overall and for available subtypes. 6. Conclusions ENIGMA-Chronic Pain will establish the largest worldwide platform for neuroimaging data dedicated to chronic pain research. This approach enables large-scale collaborative opportunities to identify the common and specific brain correlates of chronic pain conditions, as well as the role of mental health comorbidities, key sociodemographic factors, and pharmacological treatment on these alterations. This initiative will provide invaluable new knowledge based on adequately powered neuroimaging datasets. Future aims of the working group could include extending the scope to the earliest periods of the human lifespan, leveraging neonatal MRI and EEG datasets with pain-relevant paradigms,5 to investigate the potential developmental origins of chronic pain susceptibility in later years. Last, we extend the call to additional groups to join, contribute their expertise, and share their neuroimaging, genetic, psychological, and clinical data from healthy controls and individuals with chronic pain (see information and contact details on https://enigma.ini.usc.edu/ongoing/enigma-chronic-pain/). Through the inclusion of most, if not all, chronic pain neuroimaging research groups, we hope to grow the working group and thereby fulfill its goals. Conflict of interest statement None of the authors declare any conflicts of interest. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government, or those of the NHS, the NIHR, or the Department of Health from the United Kingdom.
0
Citation2
0
Save
17

Genomic Structural Equation Modeling Reveals Latent Phenotypes in the Human Cortex with Distinct Genetic Architecture

Rajendra Morey et al.Nov 8, 2022
ABSTRACT Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from anatomical, functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to model the genetic architecture of cortical surface area (SA) and cortical thickness (CT) of 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance. Genomic SEM can fit a multivariate GWAS from summary statistics, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA was explained by 6 latent factors and CT was explained by 4 latent factors. The multivariate GWAS of these latent factors identified 74 genome-wide significant (GWS) loci (p<5×10 −8 ), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of latent factor GWAS results found that SA-derived factors had a positive genetic correlation with bipolar disorder (BPD), and major depressive disorder (MDD), and a negative genetic correlation with attention deficit hyperactivity disorder (ADHD), MDD, and insomnia, while CT factors displayed a negative genetic correlation with alcohol dependence. Jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across phenotypes offers a new vantage point for mapping genetically informed cortical networks. HIGHLIGHTS Genomic SEM can examine genetic correlation across cortical regions. We inferred regional genetic networks of cortical thickness and surface area. Network-associated variants have been implicated in multiple traits. These networks are genetically correlated with several psychiatric disorders including MDD, bipolar, ADHD, and alcohol dependence.
17
Citation1
0
Save
1

Structural Covariance Networks in Post-Traumatic Stress Disorder: A Multisite ENIGMA-PGC Study

Gopalkumar Rakesh et al.Mar 16, 2021
Abstract Introduction Cortical thickness (CT) and surface area (SA) are established biomarkers of brain pathology in posttraumatic stress disorder (PTSD). Structural covariance networks (SCN) constructed from CT and SA may represent developmental associations, or unique interactions between brain regions, possibly influenced by a common causal antecedent. The ENIGMA-PGC PTSD Working Group aggregated PTSD and control subjects’ data from 29 cohorts in five countries (n=3439). Methods Using Destrieux Atlas, we built SCNs and compared centrality measures between PTSD subjects and controls. Centrality is a graph theory measure derived using SCN. Results Notable nodes with higher CT-based centrality in PTSD compared to controls were left fusiform gyrus, left superior temporal gyrus, and right inferior temporal gyrus. We found sex-based centrality differences in bilateral frontal lobe regions, left anterior cingulate, left superior occipital cortex and right ventromedial prefrontal cortex (vmPFC). Comorbid PTSD and MDD showed higher CT-based centrality in the right anterior cingulate gyrus, right parahippocampal gyrus and lower SA-based centrality in left insular gyrus. Conclusion Unlike previous studies with smaller sample sizes (≤318), our study found differences in centrality measures using a sample size of 3439 subjects. This is the first cross-sectional study to examine SCN interactions with age, sex, and comorbid MDD. Although limited to group level inferences, centrality measures offer insights into a node’s relationship to the entire functional connectome unlike approaches like seed-based connectivity or independent component analysis. Nodes having higher centrality have greater structural or functional connections, lending them invaluable for translational treatments like neuromodulation.
1
Citation1
0
Save
Load More