GR
Geneviève Richard
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
25
(36% Open Access)
Cited by:
486
h-index:
28
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
0

Reliability, sensitivity and predictive value of fMRI during multiple object tracking as a marker of cognitive training gain in combination with tDCS in stroke survivors

Knut Kolskår et al.Apr 9, 2019
Abstract Computerized cognitive training (CCT) combined with transcranial direct current stimulation (tDCS) has showed some promise in alleviating cognitive impairments in patients with brain disorders, but the robustness and possible mechanisms are unclear. In this prospective double-blind randomized clinical trial, we investigated the feasibility and effectiveness of combining CCT and tDCS, and tested the predictive value of and training-related changes in fMRI-based brain activation during attentive performance (multiple object tracking) obtained at inclusion, before initiating training, and after the three-weeks intervention in chronic stroke patients (> 6 months since hospital admission). Patients were randomized to one of two groups, receiving CCT and either (1) tDCS targeting left dorsolateral prefrontal cortex (1 mA), or (2) sham tDCS, with 40s active stimulation (1 mA) before fade out of the current. 77 patients were enrolled in the study, 54 completed the cognitive training, and 48 completed all training and MRI sessions. We found significant improvement in performance across all trained tasks, but no additional gain of tDCS. fMRI-based brain activation showed high reliability, and higher cognitive performance was associated with increased tracking-related activation in the dorsal attention network (DAN) and default mode network (DMN) as well as anterior cingulate after compared to before the intervention. We found no significant associations between cognitive gain and brain activation measured before training or in the difference in activation after intervention. Combined, these results show significant training effects on trained cognitive tasks in stroke survivors, with no clear evidence of additional gain of concurrent tDCS.
24

A history of previous childbirths is linked to women’s white matter brain age in midlife and older age

Irene Voldsbekk et al.Nov 22, 2020
Abstract Maternal brain adaptations occur in response to pregnancy, but little is known about how parity impacts white matter (WM) and WM ageing trajectories later in life. Utilising global and regional brain-age prediction based on multi-shell diffusion MRI data, we investigated the association between previous childbirths and WM brain age in 8,895 women in the UK Biobank cohort (age range = 54 - 81 years). The results showed that number of previous childbirths was negatively associated with WM brain age, potentially indicating a protective effect of parity on brain WM later in life. Both global WM and grey matter brain age estimates showed unique contributions to the association with previous childbirths, suggesting partly independent processes. Corpus callosum contributed uniquely to the global WM association with previous childbirths, and showed a stronger relationship relative to several other tracts. While our findings demonstrate a link between reproductive history and brain WM characteristics later in life, longitudinal studies are required to establish causality and determine how parity may influence women’s WM trajectories across the lifespan.
16
1

A comparison of intracranial volume estimation methods and their cross-sectional and longitudinal associations with age

Stener Nerland et al.Mar 30, 2022
Abstract Intracranial volume (ICV) is frequently used in volumetric brain magnetic resonance imaging (MRI) studies, both as an adjustment factor for head size and as a variable of interest. Associations with age have been reported in both longitudinal and cross-sectional studies, but results have varied, potentially due to differences in ICV estimation methods. Here, we compared five commonly used ICV estimation methods and their cross-sectional and longitudinal associations with age. T1-weighted cross-sectional MRI data was included for 651 healthy individuals recruited through the NORMENT Centre (mean age = 46.1 years, range = 12.0-85.8 years) and 2,410 healthy individuals recruited through the UK Biobank study (UKB, mean age = 63.2 years, range = 47.0-80.3 years), where follow-up data was also available with a mean follow-up interval of 2.3 years. ICV was estimated with FreeSurfer (eTIV and sbTIV), SPM12, CAT12, and FSL. We assessed Pearson correlations, performed Bland-Altman analysis, and tested the explained variance of sex, height, body weight, and age on pairwise differences between ICV estimation methods. We fitted regression models to test linear and non-linear cross-sectional associations between age and ICV. For the UKB dataset, we further assessed longitudinal ICV change using linear mixed-effects (LME) models. We found overall high correlations across ICV estimation method, with the lowest correlations between FSL and eTIV (r=0.87) and between FSL and CAT12 (r=0.89). Widespread proportional bias was found in the Bland-Altman analyses, i.e., agreement between methods varying as a function of head size. Body weight, age, and sex explained the most variance in the differences between ICV estimation methods, indicating possible confounding by these variables for some estimation methods. In the NORMENT dataset, cross-sectional associations with age were found only for FSL and SPM12, indicating a positive association. For the UKB dataset, we observed negative cross-sectional associations with age for all ICV estimation methods. Longitudinal associations with age were found for all ICV estimation methods, with estimated annual percentage change ranging from −0.291 % to −0.416 % across the sampled age range. This convergence of longitudinal results across ICV estimation methods, in the largest dataset to date, offers strong evidence for age-related ICV reductions in mid- to late adulthood. Highlights Correlations between the five assessed estimation methods were very high (r>0.90) with the exception of FSL and eTIV (r=0.87), and FSL and CAT12 (r=0.89). Explained variance of estimated ICV differences by body weight, age, and sex indicate possible confounding for some ICV estimation methods. Positive cross-sectional associations with age, from adolescence to old age, were observed for the SPM12 and FSL estimation methods in one dataset. In the other dataset, negative cross-sectional associations with age, from mid- to late adulthood, were found for all estimation methods. Longitudinal ICV changes were observed for all estimation methods, indicating an annual percentage ICV reduction of −0.29 % to −0.42 % in mid- to late adulthood.
43

White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction

Dani Beck et al.Apr 23, 2020
Abstract The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI datasets, we combined complementary dMRI models to investigate age trajectories in healthy individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and machine learning based brain age prediction, we assessed the age-dependence of diffusion metrics, and compared the age prediction accuracy of six different diffusion models, including diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk’s theorem analysis showed that the ‘FA fine’ metric of the RSI model and ‘orientation dispersion’ (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI.
5

Evidence for reduced long-term potentiation-like visual cortical plasticity in schizophrenia and bipolar disorder

Mathias Valstad et al.Jun 8, 2020
Abstract Background Several lines of research suggest that impairments in long-term potentiation (LTP)-like synaptic plasticity might be a key pathophysiological mechanism in schizophrenia (SZ) and bipolar disorder type I (BDI) and II (BDII). Using modulations of visually evoked potentials (VEP) of the electroencephalogram, impaired LTP-like visual cortical plasticity has been implicated in patients with BDII, while there has been conflicting evidence in SZ, a lack of research in BDI, and mixed results regarding associations with symptom severity, mood states, and medication. Methods We measured the VEP of patients with SZ spectrum disorders (n=31), BDI (n=34), BDII (n=33), and other BD spectrum disorders (n=2), and age-matched healthy control participants (n=200) before and after prolonged visual stimulation. Results Compared to healthy controls, modulation of VEP component N1b, but not C1 or P1, was impaired both in patients within the SZ spectrum (χ 2 =35.1, p=3.1×10 −9 ) and BD spectrum (χ 2 =7.0, p=8.2×10 −3 ), including BDI (χ 2 =6.4, p=0.012), but not BDII (χ 2 =2.2, p=0.14). N1b modulation was also more severely impaired in SZ spectrum than BD spectrum patients (χ 2 =14.2, p=1.7×10 −4 ). The reduction in N1b modulation was related to PANSS total scores (χ 2 =10.8, p=1.0×10 −3 ), and nominally to number of psychotic episodes (χ 2 =4.9, p=0.027). Conclusions. These results suggest that LTP-like plasticity is impaired in SZ and BDI, but not BDII, and related to psychotic symptom severity. Adding to previous genetic, pharmacological, and anatomical evidence, these results implicate aberrant synaptic plasticity as a mechanism underlying SZ and BD.
0

Cross-sectional and longitudinal brain scans reveal accelerated brain aging in multiple sclerosis

Jon Berg–Johnsen et al.Oct 10, 2018
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. By combining longitudinal MRI-based brain morphometry and brain age estimation using machine learning, we tested the hypothesis that MS patients have higher brain age relative to chronological age than healthy controls (HC) and that longitudinal rate of brain aging in MS patients is associated with clinical course. Seventy-six MS patients, 71 % females and mean age 34.8 years (range 21-49) at inclusion, were examined with brain MRI at three time points with a mean total follow up period of 4.4 years. A machine learning model was applied on an independent training set of 3208 HC, estimating individual brain age and calculating the difference between estimated brain age and chronological age, termed brain age gap (BAG). We also assessed the longitudinal change rate in BAG in MS individuals. We used additional cross-sectional MRI data from 235 HC for case-control comparison. MS patients showed increased BAG (4.4 ±6.6 years) compared to HC (Cohen′s D = 0.69, p = 4.0 x 10-6). Longitudinal estimates of BAG in MS patients suggested an accelerated rate of brain aging corresponding to an annual increase of 0.41 (±1.23) years compared to chronological aging for the MS patients (p = 0.008). On average, patients with MS have significantly higher BAG compared to HC and accelerated rate of brain aging compared to chronological aging. Brain age estimation represents a promising method for evaluation of brain changes in MS, with potential for predicting future outcome and guide treatment.
0

The genetic architecture of the human cerebral cortex

Katrina Grasby et al.Sep 3, 2018
The cerebral cortex underlies our complex cognitive capabilities, yet we know little about the specific genetic loci influencing human cortical structure. To identify genetic variants, including structural variants, impacting cortical structure, we conducted a genome-wide association meta-analysis of brain MRI data from 51,662 individuals. We analysed the surface area and average thickness of the whole cortex and 34 regions with known functional specialisations. We identified 255 nominally significant loci ( P ≤ 5 × 10−8); 199 survived multiple testing correction ( P ≤ 8.3 × 10−10; 187 surface area; 12 thickness). We found significant enrichment for loci influencing total surface area within regulatory elements active during prenatal cortical development, supporting the radial unit hypothesis. Loci impacting regional surface area cluster near genes in Wnt signalling pathways, known to influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression and ADHD.One Sentence Summary Common genetic variation is associated with inter-individual variation in the structure of the human cortex, both globally and within specific regions, and is shared with genetic risk factors for some neuropsychiatric disorders.
Load More