RH
Ryota Hashimoto
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(73% Open Access)
Cited by:
3,995
h-index:
74
/
i10-index:
334
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group

Sinéad Kelly et al.Oct 17, 2017
The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org .
0

Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease

Amanda Law et al.Apr 18, 2006
Genetic variation in neuregulin 1 ( NRG1 ) is associated with schizophrenia. The disease-associated SNPs are noncoding, and their functional implications remain unknown. We hypothesized that differential expression of the NRG1 gene explains its association to the disease. We examined four of the disease-associated SNPs that make up the original risk haplotype in the 5′ upstream region of the gene for their effects on mRNA abundance of NRG1 types I–IV in human postmortem hippocampus. Diagnostic comparisons revealed a 34% increase in type I mRNA in schizophrenia and an interaction of diagnosis and genotype (SNP8NRG221132) on this transcript. Of potentially greater interest, a single SNP within the risk haplotype (SNP8NRG243177) and a 22-kb block of this core haplotype are associated with mRNA expression for the novel type IV isoform in patients and controls. Bioinformatic promoter analyses indicate that both SNPs lead to a gain/loss of putative binding sites for three transcription factors, serum response factor, myelin transcription factor-1, and High Mobility Group Box Protein-1. These data implicate variation in isoform expression as a molecular mechanism for the genetic association of NRG1 with schizophrenia.
0
Citation399
0
Save
0

Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report

Mirko Manchia et al.Jun 19, 2013
Objective The assessment of response to lithium maintenance treatment in bipolar disorder (BD) is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the “Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder” scale currently used in the Consortium on Lithium Genetics (ConLiGen) study. Materials and Methods Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (κ)] and reliability [intra-class correlation coefficient (ICC)] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling. Results Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (κ = 0.66 and κ = 0.54, respectively), without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (ICC1 = 0.71 and ICC2 = 0.75, respectively). Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders). Conclusions We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.
0
Citation397
0
Save
0

Human Dysbindin (DTNBP1) Gene Expression inNormal Brain and in Schizophrenic Prefrontal Cortex and Midbrain

Cynthia Weickert et al.Jun 1, 2004

Context

 The schizophrenia-susceptibility gene dysbindin (DTNBP1on 6p22.3) encodes a neuronal protein that binds to β-dystrobrevin and may be part of the dystrophin protein complex. Little is known about dysbindin expression in normal or schizophrenic brain. 

Objectives

 To determine whether brain regions implicated in schizophrenia express dysbindin and whether abnormal levels of dysbindin messenger RNA (mRNA) may be found in this disorder and to test whether sequence variations in the dysbindin gene in the promoter region, 5′ and 3′ untranslated regions, or introns would affect dysbindin mRNA levels. 

Methods

 In patients with schizophrenia and controls, we compared dysbindin, synaptophysin, spinophilin, and cyclophilin mRNA levels in the dorsolateral prefrontal cortex and dysbindin mRNA levels in the midbrain by in situ hybridization. We genotyped brain DNA at 11 single nucleotide polymorphisms to determine whether genetic variation in the dysbindin gene affects cortical dysbindin mRNA levels. 

Main Outcome Measures

 Quantitative assessment of dysbindin mRNA levels across various brain regions and comparative studies of dysbindin mRNA levels in brains of patients with schizophrenia compared with normal controls. 

Results

 Dysbindin mRNA was detected in the frontal cortex, temporal cortex, hippocampus, caudate, putamen, nucleus accumbens, amygdala, thalamus, and midbrain of the adult brain. Patients with schizophrenia had statistically significantly reduced dysbindin mRNA levels in multiple layers of the dorsolateral prefrontal cortex, whereas synaptophysin, spinophilin, and cyclophilin mRNA levels were unchanged. Dysbindin mRNA levels were quantitatively reduced in the midbrain of patients with schizophrenia, but not statistically significantly. Cortical dysbindin mRNA levels varied statistically significantly according to dysbindin genotype. 

Conclusions

 Dysbindin mRNA is expressed widely in the brain, and its expression is reduced in schizophrenia. Variation in dysbindin mRNA levels may be determined in part by variation in the promoter and the 5′ and 3′ untranslated regions. These data add to the evidence that dysbindin is an etiologic factor in schizophrenia risk.
0

Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia

Tadahiro Numakawa et al.Sep 2, 2004
Genetic variation in dysbindin (DTNBP1: dystrobrevin-binding protein 1) has recently been shown to be associated with schizophrenia. The dysbindin gene is located at chromosome 6p22.3, one of the most promising susceptibility loci in schizophrenia linkage studies. We attempted to replicate this association in a Japanese sample of 670 patients with schizophrenia and 588 controls. We found a nominally significant association with schizophrenia for four single nucleotide polymorphisms and stronger evidence for association in a multi-marker haplotype analysis (P=0.00028). We then explored functions of dysbindin protein in primary cortical neuronal culture. Overexpression of dysbindin induced the expression of two pre-synaptic proteins, SNAP25 and synapsin I, and increased extracellular basal glutamate levels and release of glutamate evoked by high potassium. Conversely, knockdown of endogenous dysbindin protein by small interfering RNA (siRNA) resulted in the reduction of pre-synaptic protein expression and glutamate release, suggesting that dysbindin might influence exocytotic glutamate release via upregulation of the molecules in pre-synaptic machinery. The overexpression of dysbindin increased phosphorylation of Akt protein and protected cortical neurons against neuronal death due to serum deprivation and these effects were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor. SiRNA-mediated silencing of dysbindin protein diminished Akt phosphorylation and facilitated neuronal death induced by serum deprivation, suggesting that dysbindin promotes neuronal viability through PI3-kinase-Akt signaling. Genetic variants associated with impairments of these functions of dysbindin could play an important role in the pathogenesis of schizophrenia.
0
Citation351
0
Save
0

Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study

Liping Hou et al.Jan 22, 2016
Lithium is a first-line treatment in bipolar disorder, but individual response is variable. Previous studies have suggested that lithium response is a heritable trait. However, no genetic markers of treatment response have been reproducibly identified.Here, we report the results of a genome-wide association study of lithium response in 2563 patients collected by 22 participating sites from the International Consortium on Lithium Genetics (ConLiGen). Data from common single nucleotide polymorphisms (SNPs) were tested for association with categorical and continuous ratings of lithium response. Lithium response was measured using a well established scale (Alda scale). Genotyped SNPs were used to generate data at more than 6 million sites, using standard genomic imputation methods. Traits were regressed against genotype dosage. Results were combined across two batches by meta-analysis.A single locus of four linked SNPs on chromosome 21 met genome-wide significance criteria for association with lithium response (rs79663003, p=1·37 × 10(-8); rs78015114, p=1·31 × 10(-8); rs74795342, p=3·31 × 10(-9); and rs75222709, p=3·50 × 10(-9)). In an independent, prospective study of 73 patients treated with lithium monotherapy for a period of up to 2 years, carriers of the response-associated alleles had a significantly lower rate of relapse than carriers of the alternate alleles (p=0·03268, hazard ratio 3·8, 95% CI 1·1-13·0).The response-associated region contains two genes for long, non-coding RNAs (lncRNAs), AL157359.3 and AL157359.4. LncRNAs are increasingly appreciated as important regulators of gene expression, particularly in the CNS. Confirmed biomarkers of lithium response would constitute an important step forward in the clinical management of bipolar disorder. Further studies are needed to establish the biological context and potential clinical utility of these findings.Deutsche Forschungsgemeinschaft, National Institute of Mental Health Intramural Research Program.
0
Citation345
0
Save
0

Abnormal asymmetries in subcortical brain volume in schizophrenia

Naohiro Okada et al.Jan 19, 2016
Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. Moreover, few large-scale studies have assessed asymmetries of subcortical volumes in schizophrenia. Here, as a work completely independent of a study performed by the ENIGMA consortium, we conducted a large-scale multisite study of subcortical volumetric differences between patients with schizophrenia and controls. We also explored the laterality of subcortical regions to identify characteristic similarities and differences between them. T1-weighted images from 1680 healthy individuals and 884 patients with schizophrenia, obtained with 15 imaging protocols at 11 sites, were processed with FreeSurfer. Group differences were calculated for each protocol and meta-analyzed. Compared with controls, patients with schizophrenia demonstrated smaller bilateral hippocampus, amygdala, thalamus and accumbens volumes as well as intracranial volume, but larger bilateral caudate, putamen, pallidum and lateral ventricle volumes. We replicated the rank order of effect sizes for subcortical volumetric changes in schizophrenia reported by the ENIGMA consortium. Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia.
Load More